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Calculus 4c-3 Introduction

Introduction

Here we present a collection of examples of general systems of linear differential equations and some
applications in Physics and the Technical Sciences. The reader is also referred to Calculus 4b as well
as to Calculus 4c-2.

It should no longer be necessary rigourously to use the ADIC-model, described in Calculus 1c¢ and
Calculus 2c, because we now assume that the reader can do this himself.

Even if T have tried to be careful about this text, it is impossible to avoid errors, in particular in the

first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
21st May 2008
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Calculus 4c-3 Homogeneous systems of linear differential equations

1 Homogeneous systems of linear differential equations

Example 1.1 Given the homogeneous linear system of differential equations,

wE()=(V ) (). re=

1) Prove that everyone of the vectors

@) cosht sinh ¢ et
sinht )’ cosht )’ et )

is a solution of (1).

2¢t
Qet ’

2) Are the vectors in (2) linearly dependent or linearly independent?

3) How many linearly independent vectors can at most be chosen from (2)¢ In which ways can this
be done?

4) Write down all solutions of (1).

5) Find that solution < Za; > of (1), for which

1) We shall just make a check:
d (cosht '\ _( sinht and 0
dt \ sinht )\ cosht
d ( sinht \ _ ( cosht and 0
dt \ cosht )\ sinht 1

0

1
d (2 [ 2t 1 0
ar \2et ) T\ 2et an 1

2) The vectors are clearly linearly dependent, cf. also (3).

—
O =

cosht \ [ sinht
sinh¢ ) \ cosht )’
_ [ cosht
~ \_sinht )’

3) We can at most choose two linearly independent vectors. We have the following possibilities,
cosht sinh ¢ cosht et
sinht '\ cosht ’ sinht /' \ e
cosht 2et sinh t et
sinht )7’ \ 2et ’ cosht )\ & ’
sinh ¢ 2et
cosht )7\ 2 :
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Calculus 4c-3 Homogeneous systems of linear differential equations

4) It follows from (3) that all solutions are e.g. given by

T\ _, cosht te sinht \ [ c¢jcosht+cosinht
y ) "'\ sinht 2\ cosht )~ \ ecycosht+ecysinht )’
for t € R, where ¢; and ¢ are arbitrary constants.

5) If we put ¢ = 0 into the solution of (4), then

(oo ) =(2)=(2)

hence

x(t) \ _ cosht —sinht \ N, 1
y(t) N —cosht + sinht - _e ! =e R

Today’s job market values ambitious, innovative, perceptive team players. Swedish
universities foster these qualities through a forward-thinking culture where you’re
close to the latest ideas and global trends.
Whatever your career goals may be, studying in Sweden will give you valuable
Swedish Institute ~~ skills and a competitive advantage for your future. www.studyinsweden.se
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Calculus 4c-3 Homogeneous systems of linear differential equations

t+1
t

L6)-(33)G) () ven

Find all solutions of this system, and find in particular that solution, for which

Example 1.2 Prove that < ) s a solution of the system

0 1 t+1 + 1—t - t n 11—t (1Y i x
1 0 t —t a t+1 —t 1) at\y )’
and the equation is fulfilled.

It follows from FExzample 1.1 that the complete solution of the homogeneous system of equations is
given by

. =c cosht +c sinh f c1, ¢y arbitraere
y )~ "'\ sinht 2\ cosht )’ 1oz ‘

Due to the linearity, the complete solution of the inhomogeneous system of differential equations is
given by

z\ _ [(t+1 cosht sinh ¢ .
(y) —( ¢ )+Cl<sinht>+02(cosht>’ c1, co arbitreere.

If we put ¢ = 0 into the complete solution, we get

(o )= (o) ralo)re() = (12 )= ()

hence ¢; = 0 and ¢a = —1. The wanted solution is

xz(t) \ _ (t+1\ (sinht) [ t+1—sinht —
y(t) ) t cosht | t —cosht ’ ’
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Calculus 4c-3 Homogeneous systems of linear differential equations

Example 1.3 Find that solution z1(t) = (z1,22)7 of

d [ x 1 -1 x
oa(n)=(3)(5)
which satisfies z1(0) = (1,0)7.

Than find that solution za(t) of (3), which satisfies z2(0) = (0,1)7.
What is the complete solution of (3)?

1) The complete solution.

a) The “fumbling method”. The system is written

d.’tl/dt =X — X9,
dl’z/dt =T + Zo,

dx
thus in particular zo = 1 — bt

dt -
By insertion into the latter equation we get

dey _dvy dPzy o dm
. P

hence by a rearrangement,

d2l’1 dSCl
— —2—+4+2x; =0.
dr? a T

The characteristic polynomial R? — 2R + 2 has the roots R = 1 & i, so we conclude that the
complete solution is

1 = crel cost + coel sint, c1, co arbitrary.

It follows from

dx
d_tl = (c1 + c)e cost + (ca — c1)el sint,
that
d.l?l ¢ t .
To = X1 — T —coe’ cost + cie”sint.

Summing up we get

t t . .
T\ cie’ costtcge”sint \ [ cost t sint
(4) < 9 ) - ( —cqet cost+cietsint ) =\ int Tee| _ cost )’
where ¢y and ¢y are arbitrary constants.

b) Alternatively we apply the eigenvalue method. From

=(A-1)%+1=0

1-x -1
1 1—-A

we obtain the complex conjugated eigenvalues A = 1 + i.
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Calculus 4c-3 Homogeneous systems of linear differential equations

A complex eigenvector for e.g. A = 1+ i is the “cross vector” of (1 — X\, —1) = (—i,—1), thus
e.g. v=(1,-1i).
A fundamental matriz is

®(t) = (Re {e(a““’)t (o + zﬁ)} | Im {e(“+i“’)t(a + zﬁ)}) = e coswt(a f) + e sinwt(—F a).

Here,

) . 1 0
A=1+i=a+iw, a_<0>, ﬂ_(_1>’

S0
10 0 1 cost sint
. t i _t
P(t)=¢ cost(o 1>+e smt(1 0)—6 <sint cost)'

The complete solution is
. ¢ cost ' sint
x(t) = ®(t)c = cre ( sint ) + coe ( _ cost > ,

where ¢y and ¢y are arbitrary constants.

¢) Alternatively we can directly write down the exponential matrix,

a 1
exp(At) = e {cos wt — — sin wt} I+ —e“sinwt- A
w w

1 0 1 -1 cost —sint
— otfens tsi =’
= e'(cost blnt)(o 1>—|-e smt(l 1) e (sint cost)’

so the complete solution becomes

x(t) = exp(At)c = cret ( Cps;ﬁ ) + eoet ( —sint ) 7

sin cost

where ¢y and ¢y are arbitrary constants.

d) Alternatively (only sketchy) the eigenvalues A = 1 4 ¢ indicate that the solution necessarily
is of the structure

x1(t) = arel cost + azel sint,
T2 (t) = blet cost + bzet sint.

We have here four unknown constants, and we know that the final result may only contain
two arbitrary constants. By insertion into the system of differential equations we get by an
identification that b; = a; og b = —as9, and we find again the complete solution

1 aiet cost + aqgel sint . [ cost ‘ sint
= b ¢ =aje . + age ,
T9 aje’sint — age’ cost sint —cost
where a; and as are arbitrary constants.

2) By using the initial conditions z;(0) = (1,0)7 in e.g. (4) we get

()=o) =),

thus ¢; = 1 and ¢ = 0, and hence

et cost
z(l) = ( elsint ) ’
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Calculus 4c-3 Homogeneous systems of linear differential equations

3) By inserting the initial conditions z2(0) = (0,1)T into e.g. (4), we get

()=o) ()

thus ¢; = 0 and ¢3 = —1, hence
—elsint
22(t) = ( etcost |-

4) The complete solution has already been given i four different versions in (1).

www.job.oticon.dk
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Calculus 4c-3 Homogeneous systems of linear differential equations

Example 1.4 Find by using the eigenvalue method the complete solution of the following system of
differential equations

a0 2 )0

The eigenvalue method. It follows immediately that the eigenvalues are A\y = 1 and Ao = —2.
To the eigenvalue A\; = 1 correspond the eigenvectors which are proportional to (1,0).
To the eigenvalue Ay = —2 corresponds the eigenvectors which are proportional to (1, —3).

The complete solution is
z(t) ) _ et e 2t (1 _ot 1
< (1) > =c ( 0 +c2 _3e-2t =cie 0 +coe _3 )
where ¢; and ¢ are arbitrary constants.

Alternatively the exponential matrix is given by

! 1
A — s {*/\26/\1t+)\16>\2t} I+ m {eAltfeAﬁ} A

1 _ 1 0 1 i 1 1
- §{2et+e 2'f}(o 1)+§{et—ezt}<0 2)

1/ 9ette—2t 1ot o2t ot _ g2t
3 0 2¢t 4672t —2¢t 422

1 3ot et — o2t
— 300 3e~2t ’

The complete solution is

() =o(5) v ("),

where ¢; and ¢ are arbitrary constants.

exp(At)

Alternatively the system is written (the “fumbling method”),

dxq N dxs
— =zt —
dt P dt

from which we immediately get xo = coe™

- _21'27
2t
Then by insertion

d.%'l _
— — I1 = Cg¢€ 2t,

dt
S0

1
x1 = cret + cht/e_te_Qt dt = c1et — gCge_zt.
Summing up we have
1
ri(t)\ _ [ ael—zee™ \ _ (1N 1 5 1
(20)- ( aen )7 \0) TR s )

where ¢y and ¢y are arbitrary constants.
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Calculus 4c-3 Homogeneous systems of linear differential equations

Example 1.5 Find by the eigenvalue method the complete solution of the following system of differ-
ential equations

(4 )

1) The eigenvalue method. The eigenvalues are the solutions of the following equation,

1—A 4
-2 —=3-A

‘ =(1-AN(-3-N)+8=X+2\+5=0,

hence A = —1 + 2i.

A complex eigenvector corresponding to e.g.. A = a + iw = —1 4 2i is a cross vector of
(1=X\4) = (2—2i,4) =201 —i,2),

so we have e.g.
v=a+if=(2-14+i)" =2,-1)T +i0,1)T.

Then a fundamental matrix is given by

®(t) = e“coswtla B)+ e sinwt(—3 )
_ 2 0 _ 0 2
_ t . t .
= e cos?t( 1 )—i—e stt( 1 1 )
- 2cos 2t 2sin 2t
- ¢ —cos2t —sin2t cos2t —sin2t |-

The complete solution is

x(t) = et ( 2cos 2t ) +eget < 2sin 2t ) .

— cos 2t — sin 2t cos 2t — sin 2t

2) Alternatively it follows by the “fumbling method” that

d

£:x1—|—4x2,

dt - 1dr, 1
speclelt ro = — —— — — Iq.

dao P 2 4 dt 4 !

E:—2x1—3x27

We get by insertion into the second equation,

1 d2.’IJ1 1 d(El 3 d(El 3

1 1@ T ig tat

hence by a rearrangement,

d2$1 dxl
2—— +b5x1 =0.
a T TPT

Download free books at BookBooN.com

13



Calculus 4c-3 Homogeneous systems of linear differential equations

The characteristic polynomial R? 4+ 2R + 5 has the roots R = —1 % 2i, so the complete solution is
21(t) = cre " cos 2t + coe ' sin 2t.

We conclude from

d
—;;1 = (2¢3 —c1)e Feos 2t + (—2¢; — ca)e” Fsin 2t,
that
dxy —t —t
dro = Pt (2¢a — 2¢1)e™" cos 2t + (—2¢; — 2¢9)e™ " sin 2t.

Summing up we have

—t —t s
x1(t) _ . cre” " cos2t + c%e sin 2t
z2(t) —§C1e_t(cos 2t + sin 2t) + §C2€_t(COS 2t — sin 2t)

I 2cos 2t —l—l y 2sin 2¢
B — cos 2t — sin 2t 9 2¢ cos 2t —sin2t J’

where ¢, and ¢y are arbitrary constants.

Alternatively the exponential matrix is with a = —1 and w = 2 given by

1
exp(At)=e {cos wt — L sin wt} I+ —e*sinwtA
w w

B 1 1 0 1 _ 1 4
o t . o - t .
=e {0052t+2sm2t}<0 1)+2e sm2t(_2 _3)

_ _¢ [ cos2t +sin2t 2sin 2t
¢ —sin 2t cos 2t —sin2t )’

hence the complete solution is
z1(t) \ 4 [ cos2t+sin2¢ _t 28in 2t
< xa(t) ) - ac — sin 2¢ tege cos2t —sin2t ) -

Alternatively (sketch) the solution must have the following real structure,

< x1(t) ) _ ( are~tcos 2t + aze!sin 2t )

x2(t) bie "t cos 2t + bae ! sin 2t

so we shall “only” check that this function satisfies the equations. The details are fairly long and
tedious, so they are here left out.

Download free books at BookBooN.com
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Calculus 4c-3 Homogeneous systems of linear differential equations

Example 1.6 Describe
" 3 -1 x 12
()= ) )+ (65)- ven
as a linear system of differential equations of first order.
By introducing the new variables

/ 1
€Ty =, To =T, r3 = , s =Y,

the system can bow be written

T xZ9 0 1 0 0 X1 0

d €T9 o T3 . 0 0 1 0 X9 0

a | oz |7 e 300 1 ||as|T| 2 |+ TR
T4 Y 2 0 0 4 Ty 3 +1

WwW.STUDYINS
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Calculus 4c-3 Homogeneous systems of linear differential equations

There is here a very good reason for not asking about the complete solution. In fact, we see that the
eigenvalues are the roots of the polynomial

-2 1 0 0

-A 1 0 1 0 0 1 0 0
g _oA _1A _01 = =X 0 =X -1 |[+3|-=x 1 0 |[=2[-x 1 0
5 0 0 4—) 0 0 4-2A 0 0 4-2X 0 —-x -1

= “NUA-N+3@4-N)+2=2—4)% -3\ + 14,
where it can be proved that this polynomial does not have rationale roots.

Numerical calculations give approximatively

A1 =1,56333, A2 = 3,96633, i?’ } = —0,76483 £ 1,29339:.
4

If one insists on solving the equation, the “fumbling method” is here without question the easiest
one to apply. In fact, if we write the full system

1 — 2
y’:2$+4y+t3+17 dVS.SpeCIGIty_ T +3$+t,

{ 2" =3z —y+t3,
then it follows by insertion into the latter equation that
—2® £ 32" + 2t =22 — 42®) + 120 + 482 + 12 + 1,

hence by a rearrangement

d*z A3z dz 3 2
A4S E 3T e = £ -2t 1.

The we guess a particular solution of the form of a polynomial of degree 3, at® + bt? + ct + d (the
coefficients are really ugly), and since the characteristic polynomial is the same as before, we get the
complete solution

x(t) = at® + bt? + ct + d + c1eMt + et + 3™ cos ft + e sin fit,

where we have \3 = a + i and A\y = o — i3 from above.
Then put this solution into

y=—z" + 3z + %

One has to admit that this method is somewhat easier to apply than the “standard method” of finding
the eigenvectors first.

Download free books at BookBooN.com
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Calculus 4c-3 Homogeneous systems of linear differential equations

Example 1.7 Find the complete solution of the system

dx 3 1
gz _3 . _ 1.
2" YT 9%
dy 1 1
a - 2"t R
dz 1 n 5
— =-x =z
e 27TV TS

First solution. Inspection. It follows immediately that

d
—(z+y)=z+y, thus = 4+ vy = 2a, €,

dt
d 3t
GH2) =3y+z2),  thusy+z=2ae™,
d 2
a(z—l—x)z?(z—ka:), thus z + & = 2ase™,
S0
r = aret + axe® — asze’?,

y = aret — ase® + asze’?,

2z = —aet + aze® + ase’?,

or written as a vector,

x 1 1 -1
y | =are 1| +ae® | =1 | +aze® 1],
z -1 1 1

where a1, as and az are arbitrary constants.

Second solution. The eigenvalue method. The corresponding matrix

has the characteristic polynomial

3\ -1 _1
Eoroa S GNeNG N g N 5N 5GY
2 2
3 5 1 1 3 5 1
:—(/\—5)(/\—2)(/\—5)—Z(>\—2)+§(2/\—4):(/\—2){— ((/\—§> (A—§ ‘Z“}
:—()\—2){)\2—4)\—%%—2}:—()\—2)(/\2—4)\+3):—(/\—1)()\— (A —3),

so the eigenvalues are A =1, 2 and 3.

Download free books at BookBooN.com
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Calculus 4c-3

Homogeneous systems of linear differential equations

For A = 1 we have the eigenvector (1,1, —1).

For A = 2 we have the eigenvector (1,—1,1).

For A = 3 we have the eigenvector (—1,1,1).

The complete solution is then

T 1 1 1
y | =ce 1] +ee® | =1 | + e 1
2 1 1 1

where ¢y, ¢, c3 are arbitrary constants.

Example 1.8 Find the complete solution of the system

-1
-1

vo (v

The eigenvalues are the roots of the polynomial

A=1DA+1)+2=2+1,

1-A -1
2 —-1-A

thus A = £i. Since the eigenvalues are complex numbers, we have four solution variants.

1) The eigenvalue method. To A = a+iw = i, i.e. a = 0 and w = 1, we have a complex eigenvector

of the form

(L) ()

Then a fundamental matrix is given by

)zoz—l—iﬂ.

@) = (Re{™ M at i} tm {0t if)}) = ' coswtlor §) + e sinwt(~5 )
1 0 ) 0 1 cost sint
= cost<1 _1>+Smt(1 1> - <cost+sint sint—cost>’

so the complete solution is

(3 )= Ceont T ) 70 (nd™ e

The exponential matrix. Since the eigenvalues are
is given by a formula (¢ =0 and w = 1),

sint
sint — cost

cost
cost 4+ sint

Y1
Y2

exp(At)

—sint

cost —sint
Then the complete solution is

()= (")

where ¢y and ¢y are arbitrary constants.

cost +sint
2sint

( )

—sint
cost —sint

cost +sint
2sint

Y1
Y2

)

1
et {coswt— 2sinout}l—i——e“tsinwzﬂA:cost 10 +sint !
w w 0 1 2

, c1, co arbitrary.

complex conjugated, the exponential matrix

)

9
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Calculus 4c-3 Homogeneous systems of linear differential equations

3) Since A = +4, the real structure of the solution is given by
Y1\ _ [ ai1cost+agsint
ya | \ bycost+bysint )’
hence
d (y1) _ ( azcost —aysint
dt \ y2 )\ bycost —bysint
and
1 -1 ajcost+agsint \ [ (a1—b1)cost+(az—be)sint
2 -1 bycost+basint ) \ (2a1—by1)cost+(2a3—bg)sint ) °

When we identify the coefficients, we eliminate by and bs, thus

agzal—bl and —a1:a2—b2,
and hence
by = a1 —as and by = a1 + as.
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Calculus 4c-3

Homogeneous systems of linear differential equations

The complete solution is then

Y1\ aycost + agsint —u cost ta sint
y2 )\ (a1 —ag)cost+ (a1 +ag)sint ) U\ cost+sint 2\ —cost+sint )’
where a1 and ay are arbitrary constants.
The “fumbling method”. It follows from
% = — ie == _% +
dt Y1 — Y2, -€. Y2 dt Y1,
dys
292 oun —
dt Y1 — Y2,
by eliminating s that
Py1 | d dy,
_ A el A
az Tar TNt T
hence by a rearrangement
d2y1
— =0.
dt2 +y1
Then we get the complete solution
Y1 = c1cost + cosint.
This gives us
dy, B . .
Yo ~ +y1 = —(—c1sint + cacost) + ¢ cost + cosint

c1(sint + cost) + co(— cost + sint).

Summing up the complete solution becomes

() =e (ot Teans ) e

where ¢; and ¢ are arbitrary constants.

sint
—cost +sint

cost
sint 4+ cost

)

20
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Calculus 4c-3 Homogeneous systems of linear differential equations

Example 1.9 Find a fundamental matriz of the system
Y1 = 2y1 + 5y2 — 3ys,

Yy = —Y1 — 2y2 + ys,
Ys =y1 + 2.

The equation is written in matrix form

P 25 -3\ [
E Y2 = -1 -2 1 Y2
Y3 L1 0 Y3

The eigenvalues are the roots of the polynomial

2-X 5 -3 A 5 -3 -1 5 -3
1 —2-A 1 |=[ A —2-x 1 [=x]1 —2-x 1
1 1 - A1 = 11 -
-1 5 -3
3-A -2
=Al 0 3-A -2 A’ N

0 6 -3—-A
thus the eigenvalues are A = 0 and A\ = +i/3.

An eigenvector (aq,by,c1) corresponding to A = 0 satisfies

2a1 + 5by — 3¢1 =0, b= —a
—ay; —2by +¢1 =0, dvs { T -~
4y + by =0, c1 =ai + 2by = —ay.

Hence we may e.g. choose (1,—1,—1).

An eigenvector (ag,bs, c2) corresponding to A = iv/3 satisfies

2a945by —3cq = iv/3as, 5by —3cy = (—2+iv/3)as,
—a9—2by+coy = i\/gbg, dvs. (—2—i\/§)b2+82 = a2,
a2+b2 =1 302, bg—’i\/§62 = —9.

It follows from the latter two equations by an addition
—(1 + 'L\/g)bQ + (1 - 7;\/5)62 =0,
hence

14+iV3 (1+iv/3)2
Co = b2: b2:
1—iV3 1+3

By insertion into the second equation we get

C(1— 34 20v/3)by = %(—1 +iv/3)bs.

=

1 1
a2 = (=2 = iV3)ba + 5 (-1 +iV3)by = 5 (=5 —iV3)by.
By choosing by = 2 we find the eigenvector

(=5 —iv/3,2, -1+ iv3)T.

“AA2=9+12) = —A(\% + 3),

Download free books at BookBooN.com
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Calculus 4c-3 Homogeneous systems of linear differential equations

We get by a complex conjugation that an eigenvector corresponding to A = —i+/3 is given by

(=5 +iv3,2, -1 —iv/3)T.

The latter two columns of the corresponding fundamental matrix are

-5 —V3 V3 -5
cosV3t(a B)+sinV3t(—3 a) = cos(V/3t) 2 0 | +sin(+v/3t) 0o 21,
-1 V3 -3 -1

hence a fundamental matrix is given by

1 —5cosV3t+v3sinv3t —v/3cosv3t—5sin /3t
P(t)=| -1 2 cos /3t 2sin /3t
—1 —cosV3t —+/3sinV3t V3 cos /3t — sin /3t

Example 1.10 Find the complete solution of the system

, (10
v (1)

Obviously, A = 1 is an eigenvalue of multiplicity 2. We have a couple of solution methods.

1) Discussion of the structure of the solution. The algebraic multiplicity is 2, while the geo-
metric multiplicity is only w. Hence the complete solution must necessarily have the structure

Y1\ arel + astel
Y2 - blet -+ bgtet '
It follows by a couple of calculations that
d () _ [ (a1 + ag)e’ + agte!
dt \y2 )\ (b + b2)et + botet
and
1 0 aje’ +agte’ \ aret + aote!
2 1 b1€t + b2t€t - (2&1 + b1)€t + (2&2 + bg)tet ’
When we identify the coefficients we find that

ay + az = aq, thus as = 0,
bl + b2 = 2@1 + bl, thus bQ = 2(11.

The two free parameters are a; and by, while as = 0 and by = 2a1, so

¢ t
U1 o aye _ t 1 t 0 o (& 0 a1
<y2) _<b16t+2a1tet>_ale <2t>+b1€ (1>_(2tet et> (bl)’

where a; and by are arbitrary constants.
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2) The exponential matrix. Since A and I commute, the exponential matrix is given by

exp(At) = exp((A — I)t + It) = e’ exp(Bt),

where
0 0
B=A-1= (2 0>
and where B2 = 0, thus B” = 0 for n > 2. Then

exp(At) =

1 0
0 1

0 0
20

o )=

) +(
and the complete solution is

Y1 o et 0 C1
ya )\ 2te! € co )’

where ¢; and ¢ are arbitrary constants.

=1
e'exp(Bt) = ' ST+ Bt + Y —B"t" b = {T+Bt}
nizn.

0
et )

s PRI

D&

Get under the skin of it.

Graduate opportunities
Cheltenham | £24,945 + benefits

One of the UK’s intelligence services, GCHQ’s role is two-fold:

to gather and analyse intelligence which helps shape Britain’s
response to global events, and, to provide technical advice for the
protection of Government communication and information systems.
In doing so, our specialists — in [T, internet, engineering, languages,
information assurance, mathematics and intelligence — get well
beneath the surface of global affairs. If you thought the world was

an interesting place, you really ought to explore our world of work.

www.careersinbritishintelligence.co.uk

Applicants must be British citizens. GCHQ values diversity and welcomes applicants from
all sections of the community. We want our workforce to reflect the diversity of our work.

o
Qacha?

it’s an interesting world

23

Download free books at BookBooN.com


http://bookboon.com/count/pdf/346373/23

Calculus 4c-3 Homogeneous systems of linear differential equations

Example 1.11 Find the complete solution of the system

Yy =y2 + s,
Yo =y1 + U3,
Y3 = y1 + Y.

Here we also have a couple of solution possibilities.

1) The system can also be written

d Y1 O 1 1 Y1
v = 1 01 y2 |,
Y3 110 Y3

so the eigenvalues are the roots of the polynomial

A1 1
I =X 1 ]|==-X4+1+1+A+A+2=-(A=31-2).
11 =

We immediately guess the roots A = —1 and A = 2. Then we get by a reduction,
A =3A=2)= - A+ DA =2)A+1) = —A+1)*(\—2),
S0 A\ = Ao = —1 is a root of multiplicity w, and A3 = 2 is a simple root.

If A = —1, we get the following system of equations for the eigenvectors,

1
(A=X)v=| 1 v =0.
1

— =
I

Two linearly independent vectors which satisfy these equations are e.g.

vi=(2,-1,-1) and vy =(1,1,-2).

If A = 2 then we get

—2 1 1
A-X)v=[ 1 -2 1]v,
11 -2

and we can e.g. choose the solution vz = (1,1,1). The complete solution is

Y1 2 1 1 27t et % 1
yo | =cre | =1 | + coe? 1 43?1 ] =] -t et e c |,
Y3 -1 -2 1 —e7t —2e7t 2 s

where c¢q, ¢ and c3 are arbitrary constants.
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2) The “fumbling method”. It follows immediately of the symmetry of the equations that

d

a(yl —y2) = —(y1 — ¥2), thus y; — yo = 3c1e”,

d _
%(yz —y3)=—(y2 —y3),  thus ys —ys = 3cae™",

hence by addition y; — y3 = 3(c1 + ¢2)e~t. Finally,

d

—(y1 +y2 +y3) = 2(y1 + Y2 +y3), thus y1 + ya + y3 = 3cze?’.
dt

Hence we get

y1 — Y3 = 3(c1 + c2)et,

{ 21 + y3 = 3cie ! + 3cze?,
i.e.

y1 = (2¢1 + ca)e™t + cze?t,
Yo = (—c1 + ca)e™t + cze?,
ys = (—c1 — 2c2)e™t + c3e?,

or written in a different way,

Y1 2 1 1
ys | = cre | =1 | +cget 1|+ 0362t 11,
Y3 -1 -2 1

where ¢1, co and c3 are arbitrary constants.

Example 1.12 Find the complete solution of the system of differential equations

Y' =AY,
where
3 0 4 n(t)
A= -1 -1 01, Y = | ya(t)
2 0 -3 ys ()

The eigenvalues are the roots of the polynomial
3—\ 0 4
-1 —1-=A 0

-2 0 —3-A

3—A 4
-2 —=3-A

(=1-X)

= —A+D{N-9+8=-(A-1D\+12%
The eigenvalues are the simple root A =1 and A = —1 of multiplicity 2.

The eigenvectors (a, b, ¢) are determined by the equation

3a + 4c = Aa,
—a — b= \b,
—2a — 3¢ = Ac.
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Calculus 4c-3 Homogeneous systems of linear differential equations

If A =1, then
2a + 4c = 0, B _
a+2b=0, thus { ?a_b_jc— —c( 321)1 )
—2a —4c =0, T B
If A\=—1, then
4a + 4c =0,
—a =0, thus @ = ¢ =0, and b is a free parameter.
—2a — 2¢ =0,

Thus we have found two linearly independent solutions. The third solution must have the structure

Y1 are”t + agte™?
yo | = | biet+bote”t |,
Y3 cre”t +cote™?
where
P (—ay +az)e”t — aste™
il L (=b1+ba)e " —bote™ |,
Y3 (—c1 +co)e te™ — cote™?
and
3 0 4 Y1 (3a;+4cy)e 4+ (3ag +4co ) te™
-1 -1 0 Y2 = (ﬂ17b1)67t+(*0,2* bg)teft
-2 0 -3 Y3 (—2a1—3c1)e t+(—2as—3co)te™t

We get by identifying the coefficients that

3a1 +4cy = —ay + aq, thus 4¢1 = —4a; + as,

—a1 — by = —by + ba, thus by = —aq,
—2a1 — 3¢1 = —c1 + ¢co,  thus 2¢y + ¢ = —2aq,
3as + 4co = —ao, thus co = —as,
—ag — bg = —bg, thus a9 = 0,
—2a9 — 3cg = —co, thus co = —as.
It follows from as = 0 that co = 0, hence ¢; = —a; = by. Finally, b; can be chosen freely.

The complete solution is

Y1 -2 0 1 —2=et 0 et 1
ya | = et 1 | +ese | 1| +ege? t | = et et tet c |,
Y3 1 0 -1 et 0 —et c3

where ¢1, co and ¢z are arbitrary constants.
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Example 1.13 Find the complete solution of the system

Y =

o O O

OO ==
I

O =N =

— ==

The matrix is an upper triangular matrix, so it follows immediately by inspection that the two
eigenvalues A = +1 both have multiplicity 2. It also follows immediately that y, and y3 must have
the simplified structure

Yq = ke~t and Y3 = cse”t + eqtet.

We conclude that the general structure of solution must be

Y1 arel +astel +ase t+ayte™t
Y2 . b1€t+b2t€t+b3€_t+b4t€_t
ys | cze teqtet
Ya ke~

o
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how is crucial to running a large proportion of the
world's wind turbines.
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jeation. We help make it more economical to create
eaper energy out of thin air.
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industries ca st performance beyond expectations.
Therefore we'need the best employees who can
eet this challenge!
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.
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Calculus 4c-3 Homogeneous systems of linear differential equations

Since
Y1 (a1 +az)et +astet +(—az+aqs)e t —agte™
i ) . (bl +b2)€t+b2t€t+(—b3+b4)€_t—b4t€_t
dt Y3 o (‘63 +C4)67t764t67t
Y4 —ke™t
and
11 1 1 Y1 (a1 +b1)et +(ag+bo)te! +(as+bs+cs+k)e te t+(as+bs+ ca)te™t
01 2 1 ya | bret +botel + (b3 +2c3+k)e ™t +(by+2cq)te™
00 -1 1 ys | (—cs+k)e t—cyte™ |7
0 0 0 —1 Ya _keft
we conclude by identifying the coefficients that
a; + by = a1 + as, az + by = ag,
by = by + bg, by = by,
and
az +b3 +cg+ k= —ag+ as, as + by + ¢4 = —ay,
bs + 2¢5 + k = —bs + by, by + 2¢c4 = —by,
—c3+k=—c3+cy, —Cy = —¢y.

It follows immediately from these equations that
b2 = 0, b4 = —C4 = —k‘, bl = a.
Then the equations are reduced to

b3+03:—2a3+a4—k,
2b3 + 203 = —2]€,
k= —2a4+k,

hence
bs +c3 = —k, ay =0=as, thus c3 = —k — b3.
Let the free parameters be ay, as, b3 and k. Then
az=a4=0, by=uas, by=0, bys=-k, c3=—-k—0b3, cs=k.

The complete solution is

i aret + astet
Y2 B aset + bzet — kte™t
Y3 B (—k —b3)e™t + kte™t
Y4 ke™t
et tet 0 0
0 et et —tet
= ar| o | taz| o | Tos| ¢ [ +F (t — et
0 0 0 et
et tet 0 0 a;
B 0 e et —te™t as
= Lo 0 —et @g-vet || b |
0 0 0 et k
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Calculus 4c-3 Homogeneous systems of linear differential equations

where a1, as, bs and k are arbitrary constants.

Example 1.14 Find the complete solution of the homogeneous system
a(n)=()(3) e

The characteristic polynomial

1-A 1
4 1-A

’ =(A-1)2—4=(A-1)2=22 = A +1)(A-3)
has the roots Ay = —1 and A3 = 3.
An eigenvector corresponding to an eigenvalue X is a cross vector of

(1- A1)

[first row in the matrix A — AI].
If \; = —1, then e.g. v; = (1,-2)T.
If A3 = 3, then e.g. vo = (1,2)T.

The complete solution is

x1 B 1 4 1Y 3 et 3t c1
(a:g) - Cl(—2>6 Jr62(2)8 <—2€_t 2¢%t Co

—t 3t
_ cie” " + coe
- ( —2c1e7t + 3coe™ ) ’ teR,

where ¢; and ¢y are arbitrary constants, and where we have indicated three equivalent results.

. o dx dx1 dxg T
Example 1.15 Given x = (x1,22)", = , and

de — \dtdt
-7 2
A_<—36 10)'

Find that solution of the system of differential equations

d—X:Ax7 teR,
dt

for which x(0) = (1,5)7.

The characteristic polynomial

“A—7 2

Z36 10— ’ = (A+T)(A—10)+72 = A*—=3A+2

has the roots A\ = 1 and Ay = 2.

If \; = 1, then an eigenvector is a cross vector of (—8,2), e.g. vi = (1,4)T.
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If Ay = 2, then an eigenvector is a cross vector of (—9,2), e.g. vo = (2,9)7.

The complete solution is
z1(t) ) _ LY 2\ o
<$2(t))cl<4 e+ c2 9 e~
We get for t =0,
1y 1 2\ c1+ 2¢o
(5)=o(3)+= () - (555

hence ¢; = —1 and ¢ = 1.

The particular solution is then given by
() \ [ —el +2e*
(a:g(t) ) - (—4€t+9€2t ’ LER.
Example 1.16 Find the complete solution of the homogeneous system
d T o -3 1 I
i(n)- (3 5)(R) =
The characteristic polynomial

—3-x 1
~1  —3-)

‘:()\4—3)24—1

has the complex conjugated roots a +iw = -3+ 1-1.
A complex eigenvector « + i3 corresponding to —3 + 4 is a cross vector to (—i,1), e.g.

. 1 1 (0 1 0
= (1) =(a)=(5) ==(0) o= (1)
Then a fundamental matrix is given by

®(t) = ecoswt(a B)+esinwt(—F a)=e 3 cost < L0 ) + e 3tsint < 0 1 )

0 1 -1 0
_ Bt cost sint
o —sint  cost ) °

The complete solution is then

z1(t)  _ ot cost sint a\ e 3(cy cost + casint)
xo(t) ) —sint cost ca ) \ e 3 (—cysint + cycost) )’

where ¢; and ¢y are arbitrary constants.
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Example 1.17 Find the complete solution of the homogeneous system
i T o 1 3 X1
dt \ w2 )\ 4 5 x9 )7

The characteristic polynomial is

1-A 3
4 5—A

‘:()\—1)()\—5)—12:>\2—6)\—7—(/\—3)2—16—()\—7)(>\+1),

so the eigenvalues are Ay = —1 and \y = 7.

Once the characteristic polynomial has been found, there are several ways to continue. We shall here
give some variants.

First variant. The eigenvalue method. The eigenvector corresponding to an eigenvalue A is a
cross vector to (1 — A, 3).

If \; = —1, then we e.g. get v; = (3, —-2)7.

If Ay = 7, then we e.g. get vo = (1,2)7.

The complete solution is

T\ 3 4 1\ 7 [ 3et e c1
<z2)_cl<2>e +02(2>e _<28t 2e7t co )’ tER,

where ¢; and ¢y are arbitrary constants.
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Calculus 4c-3 Homogeneous systems of linear differential equations

Second variant. Discussion of the structure of the solution. The solution must necessarily
have the structure

1\ _ [ ae”t+be™
xo )~ \ce t4+de™ )’
where we shall eliminate two of the parameters. We first calculate
d (x\ _ [ —ae”! + Tbe™
dt \ zo ]~ \ —ce ™t + Tde™
and
1 3 ae”t+be™\ [ (a+3c)e”t + (b+3d)e™
4 5 ce”t+de™ ) T\ (4a+5c)e”t + (4b + 5b)e™ |-
Now, e and e’ are linearly independent, so we get by an identification of the coefficients that

—a =a+ 3¢, 7O =0b+ 3d,
—c=4da+3c, ° 7d = 4b + 5b,

hence 2a 4+ 3¢ = 0 and 2b = d.

It follows that we may choose a = 3, ¢ = —2, and b = 1, d = 2, and then we obtain the complete
solution

v\ [ 3 w1\ [ 3et e c1
(:vg)_cle (—2>+C2€ (2) - (—2675 2e7 e )’ teR,
where ¢; and ¢ are arbitrary constants.

Third variant. The fumbling method. We expand the system,

d 1d 1
%21'14'31'2, dvs. 1'225%—5551,
X

—dt2 =4y + bxs.

Here we eliminate xo,

5
dt 3 di 3 dt 3 dt
hence by a reduction,

dz.’ﬂl dlL’l
— —6—— — T2z, =0.
az Va7
The characteristic equation R?> — 6R — 7 = 0 has the roots R = —1 and R = 7, so
x1 =ae b+ be”,

hence by putting this into the first equation,

1/d 1 2
To = — (ﬁ — x1> = 3 (—ae_t + The™ — qet — be”) = —gae_t + 2be".
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a
If we write ¢; = 3 and ¢ = b, the complete solution is

—t 7t
T o ae + be o ¢ 3 Tt 1
( 9 ) - < ——ae t 4 2pbet > = Qe < _g ) T2 2 )

Fourth variant. The exponential matrix. This is given by a formula,

-\ At by Aot At Aot
exp(At) = 26}\ +)\ S i A= f—{ Te ' —
1— A2 2
B l 767t+67t —t 3e7t
T8 0 Te *tJre” 4e*t 5eTt —
1 et 42 —3emt 4 3@”
T8\ —det44e™  2et46e™ )

7t}I o %{67t o 67t}A

—3et
He~t

1
Here 3 can be built into the arbitrary constants, so the complete solution is

1\ [ 6e7t+2eT  —3et4 3™ c1
xo )\ —de P+ 4e™  2e7t 4 67 co )

Fifth variant. (Sketch). It is also to find the exponential matrix by using its structure

exp(At) = (M + (DA, »(0) =1, ¥(0) =0,

and by checking the matrix differential equation,

%exp(At) = A exp(At)

and finally apply Caley-Hamilton’s equation,

A% —6A —TI =0, dvs. A% =6A + 7L

However, if one does not use some clever calculational tricks, one may easily end up in a mess of
formulee, so this variant is not given here in all its details.

Example 1.18 Find the complete solution of the homogeneous system

(-G

Here the eigenvalue method is the simplest method.
The eigenvalues are the roots of the equation

‘2—)\ 3

5 9y ’=(2—)\)2—32:()\—5)(>\—|—1):O7

thus A=5or A = —1.

33
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The eigenvectors. An eigenvector v is a cross vector to 2 — A, 3)

If A =5, then we get a cross vector (—3,3), so we may choose vy = (1,1).

If A = —1, then we get the cross vector (3,3), and we may choose vo = (1, —1).
The complete solution is

T\ s (1 1\ (et et ¢
(5) = (1) ree ()= (o ) (8)

where c¢q, co are arbitrary constants.

Example 1.19 Find the complete solution of the homogeneous system
i I o 1 3 X1
dt \ o )\ 4 2 xo )

First we find the eigenvalues of the matrix:

1-x 3 | _ 2 _
‘ 4 9.1 ’_()\—1)()\—2)—12—/\ —3A—-10=0,
hence the eigenvalues are A = —2 and A = 5.
If A = —2, then vq = (1,1) is an eigenvector.

If A =5, then vy = (3,4) is an eigenvector.

The complete solution is
T\ o 1 se (3 [ et 3ed o1
<z2)_cle (1)+02€ <4>_(62t 45t co )’
Example 1.20 Find the complete solution of the homogeneous system
i T o 1 5 T
dt \ = /) \ 1 =3 2 )’

‘We shall here demonstrate three variants.

1) The eigenvalue method. The eigenvalues are the roots of the characteristic polynomial

‘ 1? _35_A ‘:(/\—1)(/\4—3)—5:/\24—2)\—8:(/\+1)2—9,
hence
2,
A= —1i3:{ i

a) If A =2, then we get the matrix

()= %)

and we conclude that we may choose (5,1) as an eigenvector.
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b) If A = —4, then we get the matrix

1-\x 5 (55
1 -3-Xx) \1 1)°
and we choose e.g. (1,—1) as an eigenvector.

Summing up, the complete solution is

x 5 _ 1 He?t et
(2)ewe (e (1)-(5 2

2) The fumbling method. We expand the system of equations,

d
% = x1 + dxa,
% =T —3:1,‘2.

.
s &
= F
| \" Y
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It follows from the latter equation that

d
(5) 21 = 22 4 3g,,

dt
hence by insertion into the former one,
dry  d?zo dzo dxo
— = 3— = 5T = —— + 8xs.
v T T

Then by a rearrangement

d2$2 d.’l?g
2—— — 8z = 0.
az g T

The characteristic equation R% 4+ 2R — 8 = 0 has the roots R = 2 and R = —4, so

To = 0262t + 62674t.

If we put this into (5), we get

d
T = % + 319 = (2016% — 4026_4t) + (36162t + 3626_4t) = 5cre?t — cge™ .

Summing up we get

< T ) B ( 5cre?t — cge™ 4t ) B ( bet  —e4 ) ( 1 )
o )\ cre® e ) T\ 2 eH 2 )’
3) The exponential matrix. The characteristic polynomial is
A+1)2—09.
Then by Caley-Hamilton’s theorem,
(A+1)? —91=0, dvs. B>=9I, hvor B=A + 1
Since I and A commute, we have

exp(At) = exp(( ) = e 'exp(Bt)

2n 2n 2n+1,42n+1
7+ ——B t
> e

o
o

cosh(3t)I + = s1nh(3t) }

1 0 2 5
cosh(3t) (O 1) 3smh(3t)(1 2)}

1 3 cosh 3t + 2 sinh 3¢ 5sinh 3t

- 3 sinh 3t 3 cosh 3t — 2sinh 3t

N 3e3t 433t 423t _2e—31 5edt — He—3t

I e o3t _ o3t 3e3t 433t _ 93t 4 93t
1 _, [ 5e¥t4e 3t B5edt—pe 3

= 6 € @3t _e=3t g3t 5,3t
1 [/ 5e2tqe4t 52t _5e—4t

= 6 o2t _ =4t e2t+5674t
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Thus the complete solution is
x 5e2t 44t 5e2t —He~4t
v ) T Cr\ ot -at +c2 2t 4 5e—1t |-
Example 1.21 Find the complete solution of the homogeneous system

()= ()

We shall here only apply the eigenvalue method, even if other methods may also be applied.
The characteristic polynomial

4—-A 3
3 —4—-A

'/\225

has the roots A = £5.

If A =5, then

4-5 3 -1 3
A‘”‘( 3 —4—5)‘(3 —9)’

hence (3,1) is an eigenvector corresponding to A = 5.

If A= —5, then
(445 3 (9 3
A_M_( 3 4+5)_(3 1)’
hence (1, —3) is an eigenvector corresponding to A = —5.

The complete solution is

3 _ 1 3ebt et c
e (e () 55)(2)

for ¢t € R, where ¢; and ¢ are arbitrary constants.

Example 1.22 Find the complete solution of the homogeneous system
i X1 o 1 2 T
dt\z2 ) \ -3 8 x2 )

It follows from

‘ 1-x 2

—3 8-\ ’ = (1-N)(8=1)+6 = A —9A+14 = (A\-T)(A-2),

that the eigenvalues are A =2 and A = 7.
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1) If A = 2, then an eigenvector is a cross vector to (1 — \,2) = (—1,2), so we get e.g. (2,1) as an
eigenvector.

2) If A = 7, then an eigenvector is a cross vector to (1 — \,2) = (—6,2), so we get e.g. (1,3) as an
eigenvector.

The complete solution is

Example 1.23 Find the complete solution of the homogeneous system
d(x\_ (4 6 1
dt \z2 ) \ 8 2 x9 )7

The characteristic equation is

4—-X 6
8 2=A

’ = (A=4)(A\=2)—48 = \?—61—40 = (\—3)? =7 = 0.

We get the two eigenvalues

10,

)\:3i7:{ 4

An eigenvector corresponding to A = 10 is a cross vector to (4 — 10,6)T = (—6,6), e.g. (1,1).
An eigenvector corresponding to A = —4 is a cross vector to (4 — (—4),6)T = (8,6)7, e.g. (3, —4).

The complete solution is

z1(t) | _ T\ 1ot 3 4 [ 1€t 4 3coe™
( o (t) ) -a ( 1)° te -4 )¢ = 10t — dege™4t )7
where ¢; and ¢y are arbitrary constants.

Example 1.24 Given the matriz A by

1 2
(%)
Find exp(At) = eAt.

The characteristic polynomial

‘1)\ 2

Y ‘ = (A=1)(A+4)—6 = A2+3)1—10 = (A—2)(A+5)

has the simple roots A = 2 and A\ = —5. Then we have two methods:
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Homogeneous systems of linear differential equations

1) Definition of the exponential matrix. Since I and A commute, we get

exp(At) =e
where
B=A-21
and
-1
2
B2 _ ( !

xp((A —2I)t42tT) = e exp(Bt),
(7 )
S5 6)-( m)-m

It follows by induction that B® = (—=7)""1B, n € N. Then

exp(At) =

e* exp(Bt) = {I+Z B"t”} :e2t{1+i(_7n#t”.B}
1 1 n |

1 66275 + 67515 262t _ 267515
7 362t _ 36_5t e2t + 66—515
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Calculus 4c-3 Homogeneous systems of linear differential equations

2) The eigenvalue method. We have previously found the eigenvalues A = 2 and A = —5. We
choose an eigenvector as a cross vector to

(1-X2) or to (3,—4 —\).
To A = 2 corresponds e.g. the eigenvector vi = (2,A — 1) = (2,1).
To A = —5 corresponds e.g. the eigenvector vo = (—4 — A\, —3) = (1, —3).

Then a fundamental matrix is

- (2(3) (1) =(5 2%)

20= (7 5) o 20 =1(] ).

so the exponential matrix is

B [ 2e* et 3 1\1 1/ 6e*+e 5 2e% —2e 5
exp(At) - Q(t)(I)(O) - ( et 3¢5t 1 -2 ? - ? 32t — 35t e2t + Ge ot :

Example 1.25 Find the complete solution of the homogeneous system

d I 1 1 1 X
a i) = 1 1 1 X9
I3 1 1 1 X3

We shall here give four variants.

1) The fumbling method. In the actual case this is the simplest variant. It follows immediately
from the system of equations that

dl’l d.’EQ de3 + +
—— = —" =" =g +a0+x
dt — dt  dt PR

hence (by some conveniently chosen constants)
To = 1 + 3co, T3 = x1 + 3c3,

and

d
%(.ﬁl + o + .Tg) = 3(%‘1 + 2o + .1‘3).

We obtain from these equations that

1+ 29+ x3 =321 + 3¢9 + 3¢5 = 30163t7
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Calculus 4c-3 Homogeneous systems of linear differential equations

hence

1 = cre3t—co—cs,
Zo = 13t +2¢o —c3,

z3 = c1e¥ —co+2cs,

and thus
T1 1 -1 -1
To | = cle*?’t 1 | +co 2 +ec3| —1
T3 1 -1 2

The standard method. The eigenvalues of the matrix are the solutions of the equation
1-A 1 1

I 1—=X 1 |=0=X2+2-31-X)=-X+3\2=-X\(\-3).

1 1 1—A

It follows that A = 3 is a simple root and that A\ = 0 is a double root. Since the matrix A is
symmetric, its algebraic multiplicity is equal to its geometric multiplicity for A = 0.

0

Let y = (y1,¥2,ys3) be an eigenvector corresponding to the eigenvalue A = 3, thus

Y1 Y1 +y2 +ys
3l y2 | = | y1+y2+u
Y3 Y1+ y2 +y3

It follows immediately that y; = y2 = ys, so we may choose (1, 1,1) as an eigenvector.

If A =0 we get analogously the condition

y1+y2 +y3 =0,

which describes a plane in space. We shall only choose two linearly independent vectors, the
coordinates of which satisfy this condition. This may be done in several ways. If we e.g. choose
(1,—1,0) and (1,0, —1), then we get the complete solution

1 1 1
x)=ce® [ 1 | +e| =1 | +c3| 0
1 0 1

Calculation of the exponential matrix. It follows immediately that

111
A=|[1 1 1|, A2=3A,...,A"=3""1A,
111

so by insertion into the exponential series,

=1 =1

n=1
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Calculus 4c-3 Homogeneous systems of linear differential equations

The complete solution is all linear combinations of the columns of the exponential matrix,

e3t + 92 et —1 et — 1
xt)=c | =1 | +ea| ' +2 | +e3| 3 -1
63t_1 eSt_l €3t+2

Remark 1.1 The three solutions are of course equivalent, even though the constants do not
correspond here.

4) Cayley-Hamilton’s theorem. We prove as in (2) that the characteristic polynomial is
(—1)%det(A — AT) = A3 — 307 = A\?(\ - 3).
The corresponding differential equation

Pz >z

a Sae

has the complete solution z(t), where

x(t) = ¢+ cat + cze¥,
2 (t) = ¢y + 3czedt,
' (t) = 9czedt.

The initial conditions are

xl(,j)(()) = fori, j=0,1, 2.

If = 0, then
ci+c3=1, =1,
co 4+ 3c3 =0, thus co =0,
903 = O, C3 = O,

hence zo(t) = 1.

If 1 =1, then
c1+c3 =0, cp =0,
co+3c3 =1, thus co =1,
903 - 07 c3 =V,

hence z1(t) = t.

If i = 2, then
Cl+03:(), 01:71/9,
o+ 3c3 =0, thus co = —1/3,
90321, 63:1/9,
hence
1 3t
xg(t):—g——t—I——e
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Calculus 4c-3 Homogeneous systems of linear differential equations

Then by Caley-Hamilton’s theorem A? = 3A, and we get from the above that the exponential
matrix is

exp(At) = zo(O)I+z1(t)A + 29(t) A =T+ tA + (—% - %t + %e”) 3A

1 1 e3t+2 63t—1 e3t_1
= I+§(63t—1)A=5{3I+(e3t—1)A}=§ -1 42 -1
et —1 et —1 342

The complete solution of the differential equation is composed of all linear combinations of the
columns, i.e.

€3t+2 e3t_1 €3t—1
xt)=c | =1 | +ea| ' +2 | +ez| 31 ],
et —1 et — 1 et 42

where c¢1, o, c3 are arbitrary constants.
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Calculus 4c-3

Inhomogeneous systems of linear differential equations

2 Inhomogeneous systems of linear differential equations

Example 2.1 Find the complete solution of the system

i()=(0 ) )+ ()

The eigenvalues are the roots of the polynomial

-1
-1

cost
sint

€
Hp)

T
T2

‘—/\ -1

— __\2
DA ‘_A(A+1)+1_/\ +A+1,

so we have the complex conjugated eigenvalues

1
Ao Lo V3
2 2
: 1, .V3 . .
1) Complex eigenvectors. If A = —5 +1 0 then we get the matrix equation
1 V3
A SN (w_ 27 T wi)_ (0
1 —1-X wy ) ) 1 V3 wy )\ 0 )"
2 "2
A solution is a cross vector of e.g. the first row,
IV 1
L=—i2 | =2{21)—i
<+ =it ) S((2.1) —i(0,V3)),
hence we can choose (multiply by 2),
V3

(1) (4

Analogously we get

2 (0 1 V3
v2:(1)+z(\/§) for/\gz—ﬁ—zg.

1
fOY)\1:—§+l'7.

The complete complex solution of the homogeneous equation is

T
T2

Elehtvl + 526/\2tV2

(=)

V3

¥

e t? {COS ?t — ¢sin ;t} { (

3 3
Ele—t/Q {COS gt + 7sin Tt} {( ?

)i ()}
)i}

44
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Calculus 4c-3 Inhomogeneous systems of linear differential equations

We get by splitting into the real and the imaginary part,

(2) = 616_‘5/2{005\/7315(?)+sin§t<\?§)

(7)o 5]}

S —t/2 @ 2 . ﬁ 0
+coe {cos ) t(1>+sm 5 t \/§

g (1) - ()]}

We obtain the real complete solution by choosing ¢éo = &, hence with new (real) arbitrary constants
we get the complete real solution of the homogeneous equation

+1

2 cos ﬁt 2sin ﬁt
< o ) =cie'/? 3 2 A cpe™'/? /3 2 3
x 3 3 3 3
2 CoS —t + /3 - sin —¢ sin —¢ — /3 - cos —¢
2 2 2 2
. : : 1 V3
2) Alternatively one may only use real calculations. In fact, since A = —5 +4 5 the complete

solution of the homogeneous equation must have the structure

V3, L V3,
<$1)et/2 CLlCOST —|—a281n7
T 3 3
2 by cos —t + by sin £t
2 2
We know that we have two arbitrary constants in the final solution, and here we have got four
unknowns ai, as, by, ba, so we still have to eliminate two of them by means of the differential
equation. Now,

1 V3 V3 V3 1) V3B
——a1+-—az | cos —1l+ | ——Fa1— zas | sin —t¢
d (331 > _ o t/2 2 2 2 2 2
dt \ w2 1 V3 V3 V3, 1) V3
<—§b1+7b2> COoS 7—&- —751— §b2 s Tt

and
V3 . V3
<(1) _1><$1>:et/2 blcos\/zthSHth\/_
— 3 3 b)
2 (Cll—bl)COS 7t+(0,2—b2) sin 7t

so it follows by an identification of the coefficients of the first row that

1 V3 1 V3

_§a1 + 70,2 = _b17 thus b1 = 50,1 — TGQ’
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Calculus 4c-3 Inhomogeneous systems of linear differential equations

Y g, — — h S -
5 aq 2a2 by, thus bo B ay + 2a2

We shall not calculate the latter two equations from the second row. One may if necessary use
them as a control.

Since by and by are uniquely determined by a; and as, the complete solution of the homogeneous
equation with a; and as as the arbitrary constants becomes

V3, L V3,

T R €os <~ Ip— sin -
& Loos Y3, V30 V3, VB e V3 L V3,
2 2 2 2 2 2 2

Remark 2.1 When we compare with the solution of (1), it follows that a; = 2¢; og ag = 2¢a.

Remark 2.2 Since

1 V3 V3 V3 V3. om V3 V3 V3 V3, om
5o Tt—k?s ——t = cos <7t—§>, 5 cos 2t+§1n7t—s <7t—§>,

the complete solution can be written

V3

cos —t sin —t

T\ _ —t/2 2 —t/2 2
< 7 ) =ae \/g - + aqe ’ \/g T
Ccos Tt — § sin | —t — —

2 3

However, this reformulation is not necessary.

3) Alternatively we may use the “fumbling method”. Expanding the homogeneous system of
equations we get

dxq dxy
— = —I9, thus zo9 = ———,
dt g ’ dt
d(EQ
—= =1 — Zo.
a 1 2
Here we eliminate x5 from the latter equation,
d21'1 diL’l
. =1
di? P
thus
d’zy  dry dﬂfl
—_— 4+ — =0 o = .
a ta T & BTy

1 3
The characteristic polynomial R?2+R+1 has the roots R = — §ii % (the same as the eigenvalues),

so the complete solution is

e V3

3
x1(t) = are”? cos gt—i—age sin —t.
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Calculus 4c-3 Inhomogeneous systems of linear differential equations

Since zo = —dx1/dt, it follows that

1
zo(t —t/2 3 €0 £t+£ £t + aget? @ EH— ﬁt,

2 g L Taxe 1Ty Ty eos b g sin g

~—
|
S
—
(9]

which is seen to be equivalent to the previously found solutions.

The inhomogeneous equation. Even if one should know a fundamental matrix, it cannot be rec-
ommended to apply the formal solution formula. This would give us the following difficult expression,

V3 V3

cos —t1 sin —t
B(t) =e /2 2
s VB V3 VB, VB V3L VB,
PR 2 2 2 2 2 2

Instead we guess a particular solution of the form

x1 \ _ [ aicost+ agsint
To )\ bicost+bysint |°
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Calculus 4c-3 Inhomogeneous systems of linear differential equations

Now
i x1\ _ [ ascost—aqsint
dt \ o / ~ \ bgcost — bysint
and
0 -1 r1 ) —by cost — by sint
1 -1 T2 - (a1 —b1)COSt+(a2 —bg)Sint ’
hence by insertion,
d ([ 0 -1 x1 ) (ag+by) cost+(—ay+by)sint ~( cost
dt \ x 1 -1 zo )\ (ba—ai+by)cost+(—by—as+bs)sint )~ \ sint )’
We get by an identification of the coefficients,
as +by =1, —a1 + b2 =0,
bs —ay + by =0, —by —ag + by =1,

hence by =0, as =1 and by = ay = 2.

We get the particular solution

29\ [ 2cost+sint
9 ) 2sint '

Finally, the complete solution is obtained by adding all solutions of the homogeneous equation found
previously. Since this will give us a mess of formulae, we shall not produce it here).

Example 2.2 Find the complete solution of the system
i I . -3 4 T + 2t
dt X2 B -2 1 To t ’

1) The eigenvalues are the roots of the polynomial

‘ SN ’ =A3)A -1 +8=22 420 +5=(A+1)> +4,
hence the complex eigenvalues are A\ = —1 4 2i.

2) The corresponding complex eigenvectors are cross vector to anyone of the rows in the matrix

3-X 4 \ [ -3+1F2 4 [ —2F2 4
-2 1-))" —2 1+1F2 )~ -2 272 )

It follows from the first row, (=2 F 2i,4) = 2(—{1 £ i},2) that

vi=(2,1+i)T for \; = -1+ 24,
vo = (2,1 —i)T  for Ay = —1—2i.
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Calculus 4c-3 Inhomogeneous systems of linear differential equations

3) If \y =a+iw= —1+ 2i, where a = —1 and w = 2, then

v1:a+w:<1ii>:<3>+i(‘1}>, dvs. a:<f> ogﬁ=<(1)>.

Then we get the fundamental matrix,

(I)(t) = (Re{e(an)t(a+iﬁ)} Im{e(““‘“)t(a—f—iﬂ)}) — oot coswt(a 6) + et sinwt(—8 a)
2 0 0 2
= e tcos2t +etsin2t
1 1 -1 1
2e~t cos 2t 2¢~tsin 2t

e t(cos2t —sin2t) e '(cos2t + sin 2t)

4) This fundamental matrix looks very complicated, so it does not invite one to apply the solution
formula.

Instead we guess a particular solution of the form
x1 ) [ at+bd d(xz1\ [(a
(m)-(aza) w G(2)-(2)
We get by a rearrangement of the differential equation system that
2t o dfxm ) (-3 4 T\ _[a) (-3 4 at+b
t Tdt \ 29 -2 1 e ) \c -2 1 ct+d

() - () = (e

Then by an identification of the coefficients,
3a—4c=2, a+30—4d=0, 2a—c=1, 2b+c—d=0.

We get from the first and third equation

3a — 4c =2, a=2/5
{ 2a—c=1, that { c=—1/5.

Then by a rearrangement and insertion into the second and the fourth equation,

3b—4d = —a = —2/5, hence b=6/25,
2—d=—c=1/5 ' d="17/25.

If this is put into our guess, we obtain our particular solution

z1) _ [at+b _ §t+%7 _ 1 /10t+6
wy ) \et+d )\ —ft+5 ) 25\ —5t+7 )"
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Calculus 4c-3 Inhomogeneous systems of linear differential equations

5) It follows from the linearity that the complete solution is given by a particular solution to which
we add all the solutions of the corresponding homogeneous system,

Tq o i 10t 46 C1
(a:z) - 25(—5t+7)+‘1’(t)(@)
_ 1L /10t+6 fejet 2cost feet 2sin 2t
95\ =ht+7 L cos 2t —sin 2t 2 cos2t+sin2t )’

where ¢y and ¢ are arbitrary constants.
6) Alternatives

a) Real calculations of the solutions of the homogeneous equation. The eigenvalues
A = —1 4+ 2¢ are complex conjugated, so the structure of the solution of the homogeneous
equation is given by

T\ ot aq cos 2t + ag sin 2t
i) o bl cos 2t + bg sin 2t ’
We get by a calculation,

d (z1\ _ [ (ma1+2az)cos 2t+(—2a1 —az) sin 2t
dt \ T2 ¢ (—b1+2by) cos 2t+(—2by —by) sin2t )’

and

( -3 4 ) < T ) o e_t ( (73a1+4b1)COS 2t+(f3a2+4b2)sin2t )

-2 1 To (—2a1+b1) cos 2t+(—2as+by) sin 2t
When the coefficients are identified, we get

—a1 + 2(12 = 730,1 + 4b1, dvs. b1 = %al + %ag,

—2a1; —ag = —3ag + 4by, dvs. by = —%al + %ag,
7b1 + 2b2 = 72(11 —+ bl, dvs. a; = bl - bQ,
—2b1 - bz = —2@2 + bg, dvs. a9 = b1 —+ b2.

We see that the four equations are consistent, and that the homogeneous equation has the
complete solution

(m) _ e—t((blbz)C082t+(b1+b2)Sin2t)

To b1 cos 2t + by sin 2t

_¢ [ cos2t+sin 2t _t [ —cos2t+sin 2¢
bre < cos 2t t+boe sin 2t ’

corresponding to the fundamental matrix

cos 2t sin 2¢

®(t)=e"" (

cos 2t+sin 2t —cos 2t+sin 2t )

Notice that ®4(t) # ®(t) found previously. However, the two different fundamental matrices
are of course equivalent.
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Calculus 4c-3 Inhomogeneous systems of linear differential equations

b) Direct calculation of the exponential matrix. Since A = —1 + 2i, the trick is to put

2 4 ~1 2
B=A- ReA-I—<_2 2>_2<_1 1),

and as Im A = 424, to aim at the cosine and the sine series. We first calculate

pe (1) (0 7)=2(7 b)-m

which very conveniently gives
B = (B?)" = (-1)"-2?".1 forn €N (og for n=0).

Since I commutes with everything, we get

exp(At) = exp((A+1I)t—1It) = e "exp(Bt)

1
— —t ~ Rpn4n
= e Eion!Bt.

LANSSPAR

Hcalendar

| 4

www. 1calendar.dk

Download free books at BookBooN.com

51


http://bookboon.com/count/pdf/346373/51

Calculus 4c-3 Inhomogeneous systems of linear differential equations

We now divide the investigation into the cases of even and odd indices, and use that

B2n _ (71)n . 22nI,

SO
exp(At) = tz - @ +1 —— BB
n=0 n=0
= 1)n 2n 42 —t = 1) 2n 42 1
Z 2n)! e nzo 2n —|—1)
_ i 1 n 2t 2nI_|_ —t i 2t 2n+1 lB
— 2n)' —( 2

= etcos2tI+etSin2t<:i ?)

4 [ cos2t —sin2t 2sin 2t
¢ —sin 2t cos 2t + sin 2t

We note again that the fundamental matrix is different from both ®(¢) and ®4(¢) found pre-
viously.

¢) The fumbling method. We first expand the system,

d.’ﬂl/dt = 73.%1 + 4.’52 + 2t,
dzo/dt = =221 + 9 + L.

If we use the first equation to eliminate xs, it follows that

d(4zy)  d*ay 3% _q
dt dt2 dt ’

d
(6) dao = % + 3x1 — 2t, med

Then the latter equation of the system is multiplied by 4,

d(4.’L’2)
dt

= —8x1 + 4xo + 4t,

and we get by an insertion,

d2
Ty + 3331

dl‘l
— — —2=— — -2 4t.
72 7t 811 +{ ar + 321 t} + 4t

Then by a rearrangement,

d2 d(El
2—— + 5w = 2t + 2.
dt2 + dt +ox1 = +
The characteristic equation R? + 2R + 5 = 0 has the roots R = —1 & 2i (the same as the
eigenvalues in the other variants).

We guess a particular solution of the form

dxy d?
1 =at+0b, thus—zaand xl:O.

dt dt?
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Calculus 4c-3 Inhomogeneous systems of linear differential equations

Then by insertion,
2t +2 =0+ 2a + bat + 5b = 5at + (2a + 5b).

When we identify the coefficients, we get

Sa = 2, dvs. a =2/5,
2a+5b=2, dvs. b= 1(2—2a)=6/25.
Hence,
T = gt—l— 0 + cre " cos 2t + coe”sin 2t
P oy T ? ‘
Now,
d 2
% = + (—c1 +2c2)e Fcos 2t + (—2¢; — co)e” sin2t,
so if we put this into (6), then
dz
dry = b+ 3m -2

2
= + (—c1+2¢2)e " cos 2t+(—2c1 —ca)e sin 2t

6 18
+—t+ — 4+ 3cietcos 2t + 3eae tsin 2t — 2t

5 25
4 28 —t —t
= fgt + % + (2¢14+2¢9)e™ " cos 2t + (—2¢1+2¢2)e” " sin 2t,
whence
1 7 1 1 1 1
Tog = —gt + 3 + (501 + 562)6775 cos 2t + (—561 + 562)€7t sin 2t.

Summing up we get in matrix form

2 6 .
T _ Ft+ o ¢ cos 2t ¢ sin 2t
<$2> N (ét+27—5 tae %cos?tf%sith teze %0052t+%sin2t

_ 1 [/ 10t+6 ot cos 2t sin 2¢ c1
T 95\ —h5t4T7 %cosZt—%sith %cosZt—i—%sith cy )’

where ¢; and ¢ are arbitrary constants.
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Example 2.3 Given the linear differential equation system
d (x1) 1 -1 1 2 cos 2t
E<x2>_(—4 —1)<m2>+< mmt)’ beR
Find x5(t) if we assume that
2100\ _ [ —3

First solution. The eigenvalue method. The cigenvalues are the roots of the polynomial

‘1—A -1

1 _1_/\':()‘_1)(>\+1)—1=)\2—2. dvs. A = +V2.

We may e.g. choose an eigenvector corresponding to A = /2 as (1,1 — v/2).
An eigenvector corresponding to A = —v/2 is e.g. (1,1 +v/2).

The complete solution of the homogeneous system of equation is

T o \/§t 1 7\/§t 1
(G2)=o () v (1)

Then we guess a particular solution of the form
z1\ _ ([ acos2t+ bsin2t
2o ] \ ccos2t+dsin2t |-
Now,
d (x1\ _ [ 2bcos2t —2asin2t
dt \ o /] \ 2dcos2t — 2csin 2t
and
1 -1 acos2t+bsin2t \ [ (a—c)cos2t+(b—d)sin2t
-1 -1 ccos2t +dsin2t | \ —(a+c)cos2t—(b+d)sin2t /)’
so we can also write the system of equations in the following way,

2bcos 2t — 2asin2t = (a — ¢+ 2) cos 2t + (b — d) sin 2t,
2d cos 2t — 2¢sin2t = (—a — ¢) cos 2t + (—b — d + 1) sin 2t.

When the coefficients are identified we get

2b=a—c+ 2, thus —a+2b+c=2,
—2a=0b-—d, thus 2a +b—d =0,
2d = —a —c, thus a + ¢+ 2d = 0,

—2c=-b—d+1, thusb—2c+d=1.
It follows from the first and the third equation that

b+c+d=1,
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which together with the fourth equation implies ¢ = 0. This reduces the equations to

—a+2b=2, —a+2b =2,
2a+b—d=0, hence 2a+2b=1,
b+d=1, b+d=1,
thus
1
a=—z, b:§, c=0, d:1
3 6 6

The complete solution is

1 5 o
1\ _ [ —5co82t+ gsin2t V3t 1 /3t 1
(:132)—< %sin% tae 1—+v2 T e 1+v2 )
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Calculus 4c-3 Inhomogeneous systems of linear differential equations

It follows from the initial conditions that

(i) = () =(0)e (i) v a).

S0 1 =co =0, ie.

T\ fécos2t+%sin2t
zo ) %sin?t ’

and then finally,

1
xo(t) = 8 sin 2t.

Second solution. The “fumbling method”. We shall actually only find z2(t), so it would be
reasonable to eliminate x(¢). First we get from

d d

%:zl—x2+2cos2t, %:—zl—xg+sin2t,
that

d

T = —% — o + sin 2t,

which when put into the first equation gives
d? d d

— dta;Z — % + 2cos 2t = % — X9 + 2cos 2t — x4 + sin 2t,
hence by a rearrangement,

d? d 1
(7) dTm;—ng:—sin%, 2200)=0  og %(0):5.

If we guess a particular solution of the structure zo = acos 2t + bsin 2t, we get
—6a cos 2t — 6bsin 2t = — sin 2¢,

hence a =0 and b = %, and we find the particular solution
xa(t) = % sin 2¢.

It is seen by inspection that it fulfils the initial conditions, and since the solution is unique, we have
solved the problem.

Alternatively the complete solution of (7) is given by
1
xo(t) = 8 sin 2t + cle‘/it + 0267‘/5'5.
It follows from the initial conditions that ¢; = 0 and ¢y = 0, hence the solution is

1
x9(t) = 8 sin 2¢.
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Remark 2.3 In both cases the “fumbling method” is much easy to apply than the eigenvalue method.

Example 2.4 Find the complete solution of the system

d(z\ (0 1 ) 1\ .
i(n)= (5% B)(0) () eme

The eigenvalues are the roots of the polynomial

-2 1
-2 =2-A

‘ =A+2A+2=X+22+2=(A+1)*+1,
thus A =a +iw = —1=+1¢ where a = —1 and w = 1.
We first guess on a particular solution of the structure
( 1 ) et ( acos2t+bs%n2t ) .
To ccos 2t + dsin 2t
Since

d(x1\ _ 4 (—a+2b)cos2t — (2a+ b)sin2t
dt \za )~ € (—c+2d) cos2t — (2¢+ d) sin 2t

and
0 1 1\ ¢ ccos2t + dsin 2t
-2 =2 zy ) € —2(a+c)cos2t —2(b+d)sin2t )’
we get from the system of differential equations and a multiplication with e that

(—a+2b) cos 2t — (2a+b) sin 2t = ccos 2t+(d+1) sin 2t,
(—c+2d) cos 2t — (2¢+d) sin 2t = —2(a+c) cos 2t — (2b+2b+1) sin 2t.

‘When the coefficients are identified it follows that

—a+b=c, thusa —b+c =0,
—(2a+b)=d+1, thus —2a—b—d=1,
—c+2d=-2(a+0c), thus 2a +c+2d =0,

—(2c+d)=—(2b+2d+1), thus2b—2c+d=-1.
We get from the second and the fourth equation that
—2a+b—2c=0,
which together with the first equation gives b = 0.
The system of equations is then reduced to

a+c=0, thus ¢ = —a,
2a+d=—1, thus 2a +d = —1,
2a+c+2d=0, thusa+ 2d=0,
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hence

1 2 2
dzg, a:—g, C= - b:O7

and a particular solution is
rp\ _ 1 —2cos 2t
zo ) 36 2cos2t +sin2t |-

We still miss the complete solution of the corresponding homogeneous system of differential equations,

i z1\ (O 1 x1
dt \ =2 )\ -2 -2 2 )’
This can of course be found in many ways.

1) The eigenvalue method. We have already found the eigenvalues A = a + iw = —1 4+ i where
a = —1 and w = 1. An eigenvector corresponding to A = —1 + i is a cross vector to (1 —,1), e.g.

NEB RS ENO!

A fundamental matrix is then given by

(Re {e(a”“’)t(a + zﬁ)} Im {e(“”“’)t(a + zﬂ)})

= e“coswt(a B)+ e sinwt(—fF a)

1 0 0 1

—t —t .

e cost(_1 1>+e smt(_l _1)
¢ cost sint

¢ —cost —sint cost —sint |’

The complete solution is

r1\ _ le_t —2cos 2t Yoot cost 4ot sint
To 3 2 cos 2t + sin 2t 1 —cost —sint 2 cost —sint )’

where ¢; and ¢y are arbitrary constants.

®(t)

2) The exponential matrix. This is given by the formula (where we from the above have a = —1
and w = 1)

1
exp(At) = e {COS wt— 2 sinwt} I+ —e*sinwt- A
w w

_ =t . 1 O —t . 0 1
=e {cost+51nt}(0 L) retsint (o,

ot cost +sint sint
a —2sint  cost —sint )’

hence

r1\ left —2cos 2t Yoot cost + sint 4ot sint
e ] 3 2 cos 2t 4 sin 2t ! —2sint 2 cost —sint )’

where ¢y and ¢y are arbitrary constants.
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3) Real structure of the solution. Since A = —1 % ¢, the solution must necessarily have the
following structure

1\ _ _¢ [ ajcost+agsint
T = by cost 4+ bysint | °
Then by a calculation,
i z1\ _ ¢ [ (—a1 +a2)cost — (a; + az)sint
dt \ zo | ¢ (=by + by) cost — (by + by)sint
and
0 1 T\ ot by cost + bysint
-2 =2 To ) —2(ay + by) cost — 2(ag + by)sint |-
When we identify the coefficients we get
by = —a1 + az, by = —ay — ag,
and (a little superfluous)

71)1 —+ bg = 72(&1 -+ bl), 2((12 + b2) = bl + b2.

We have thus eliminated by and by, hence the complete solution is

1 1 _, —2cos 2t —t cost ¢ sint
= —e . +ae . + age . .
To 3 2 cos 2t + sin 2t —cost —sint cost —sint
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Calculus 4c-3 Inhomogeneous systems of linear differential equations

4) The “fumbling method”. The homogeneous system is expanded,

d d
% =29 and % = —2x1 — 2x,.

If we put the first equation into the last one, it follows by a rearrangement,

2 d
_df; +2%+2x120 med R? +2R+2=0 for R=—1+i.
Hence

21 =cre tcost 4 coe tsint

and
dml —t . —t .
Ty = — = e (—cost —sint) + cae”*(cost — sint),
thus

TL\ Lt cost 4 oepet sint
29 ) —cost —sint 2 cost —sint )’

The complete solution of the inhomogeneous system is

rp\ _ 1 —2cos 2t —t cost —t sint
(:rg)_3e <2cos2t+sin2t tee —cost —sint ) T ©2° cost —sint )’

where ¢y and ¢ are arbitrary constants.

Example 2.5 Consider the system

£ (3 (1) e

1) Find the complete solution of the system.
2) Let xo(t) be the solution, for which x0(0) = 0. Find x¢(1).

1) Clearly, the eigenvalues are 1 and 2,

1-A 1

S TP )

The corresponding eigenvectors are cross vectors to the first row:
If A=1, then vy = (1,A —1) = (1,0).

If A= -2, then vo = (1,A —1) = (1,-3).

The complete solution of the homogeneous equation is

T 41 iy 1\ [e e c1
(xg)_cle<0>+c2e (—3)‘(0 —3e2 )\ ey )

Download free books at BookBooN.com

60



Calculus 4c-3 Inhomogeneous systems of linear differential equations

The inhomogeneous term is a constant vector. Therefore, we guess on a particular solution as a
constant vector

which gives by insertion,

w-(5)-0 2 () (1)-(3)

hence b = —2 and a = 1, and we have X = (1,2)7.

If ¢; and ¢y denote the arbitrary constants, the complete solution is given by
1 et et c1
X(’“L)_(—2>+<0-—3e—2t><c2 '

Alternatively we may apply the “fumbling method”. We expand the system,
dry/dt =21 + 294+ 1, thusday/dt — 2z =29+ 1,

dry/dt = —2x, — 4, thus dao/dt + 229 = —4.
Clearly, the solution of the latter equation is
Ty =—2+ 0267275.

When this is put into the first equation, we get
o = —1 + coe™
hence
1
T =1+ CQet/e_te_Zt dt + cret =14 cret — §62€_2t,
and summing up,
1 el —Le—2t c1
_ 3
X(’5)_(2>+(0 e o)
2) When we put t = 0, we get
1 c1 + co o 0
(2)=(")-()
thus ¢y = —% and ¢ = —
1 1 6t 2 672t
wo-(1)-3(3)-3(5%)

Then finally,
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3 Examples of applications in Physics

Example 3.1 Consider a physical system consisting of two coupled oscillators. We assume that there
is no damper in the system. The three spring constants are k1, k and ko, and my and mo denote the
masses of each of the two particles. At equilibrium we assume that the spring forces are 0. It can be
proved by Newton’s second law that the system can be described by the following system of differential

equations,

d2l‘1 ]4)1—|—/€x _i.’lﬁ and dQ.TQ k2+kl' _i.’lﬁ
dtQ mi 1 mi 2 dt? mo 27 mo -
4
Putm;=mo =1, k= i, k1= §, ko = =, and assume that
10 5 5
21(0) =3-1072, 24 (0) =0,

22(0)=3-107%,  a3(0) =

Find x1(t) and z5(t) as solutions of a differential equation of fourth order.

By using the selected values of my, mo k, k1 and ko, we get

dQCEl - kl —|—k’ + k - 19 +
a2~ my T w2 10 T 10t
Pay ko ktky 311

dt2 a mo ! mo 2 10 ! 10 =

We immediately get three different methods of solution.
1) The traditional eigenvalue method. If we put

dxq dxo

Y1 =21, y2=%7 Yz = T2 OF Z/4=E,

then we get the homogeneous system

Y1 Yo O 1 0 0 Y1
dly | | —funtdw || -5 0 & 0 Y2
dt | vs Ya 0 0 0 1 Y3
Ya 1 — 153 5 0 -5 0 Ya
The eigenvalues are the roots of the polynomial
_19 3 A “10 10 0
10 10 = =) 0 =X 1|- 0 =X 1
AN 0 -1 ) sy
3 0 i ) 10 10 10
)\ 1 _ 19 0 _19 3
= | 1 )\‘—'—)“ O Il I LR
10 10 10 10
11 19 1
= N[N+ =)+ A+ —(19-11-9
( +10>+10 * 100t )

= M43 2=\ +1)(\?+2),
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thus the eigenvalues are A = +i and A\ = ++/2i.

It is here fairly difficult to find the complex eigenvectors, so we note instead that the structure of
the solution must be of the form

y1 = x1(t) = ay cost + agsint + as cos V2t + a4 sin V2t,

d
Yo = % = —aysint + ag cost — \/§CL3 sin V2t + \/§a4 cos \@t,

y3 = x2(t) = by cost + bysint + bz cos V2t + by sin V21,

d
Yy = % = —by sint + by cost — v/2bs sin V2t + V/2by cos V/2t.
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Since
d2$1 . .
Z = —aq cost —agsint — 2as cos Vot — 2a4 sin \/it,
d2$2 . .
o —by cost — by sint — 2bs cos V2t — 2by sin \/Et,
and
—Em +ix = 19a + b cost+ 19a —|— b sint
107" 107 T 10" ! 1077 ?
19 19
—i—( 10a3+10b3>cosx/_t+< 10a4+ )Sln\/_t
and
3 11 3 llb cos i+ 3 llb sint
—T—— = —a)—— S —ag—— in
107 10" 107107 10" 107
3 3
+(1—0 10b3>cosx/_t+(10 10b4)sm\/_t
we get by an identification of the coefficients that
19 3
— = — — h =
aq 10a1 + 10b thus b; = 3aq,
19 3
i —_ JR— h —
ao 10a2+ 10b2, thus by = 3as,
19 3 1
—2a3 = —Eag + Ob thus b = —§a3,
19 3 1
-2 - — by, thus by = ——ay.
aq = 10a4 + 10 us 04 30,4

This gives us the general solution

x1(t)=ay cost—+ag sint+as cos V2t+a4 sin V2,

1 1
x2(t)=3a; cost+3ag sint— 303 €08 COS V2t — 30 sin V/2t.
Since

! (t) = —ay sin t+ag cos t—agV/2 sin V2t +a4 V2 cos V/2t,

/

2 2
x5(t) =—3ay sint+3az cos t+a3§ sin \/§tfa4g cos V2,

it follows from the initial conditions that

3 1
l‘l(o):m:al—Fag, J}Q(O):m:3a1_§a3,

2
xﬁ(O):0:a2+a4\/§, x’Q(O):O:?)aQ—aélg.
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We conclude from the latter two equations that as = a4 = 0. Then

9
a3—9a17m
implies that
a2 (9g - 2 dvs. ar — 2 3
17 100 ' 100/ V9T 1000 T 250
and
g S g =3 3 _1-6_ 9
7100 "' 100 250 500 500

The wanted solution is then given by

x = % cost + % cos(v/2t),

xTo = % cost — % cos(v/2t).

2) Alternatively the system can be written

()= 1))

The eigenvalues are the roots of the polynomial

19y 3 19 11 9
10, 0 =(A+=)(A+=) - —=—=XN4+32+2=N+1)\+2
‘ R Y T10) M) T T TATZ= D),
thus either A = —1 or A = —2.
An eigenvector of the eigenvalue A = —1 is e.g. (1, 3), corresponding to the differential equation

2
ﬁ(ﬂh + 35(52) = —(1‘1 + 3372),

the complete solution of which is

(8) @1 + 3x9 = ag cost + as sint.

1
An eigenvector of the eigenvalue A = —2 is e.g. <1, —§> , corresponding to the differential equation

d? 1 _ 9 1
a2 L1 3$2 = L1 3$2 J

the complete solution of which is

(9) x1 — %1‘2 = by cos(V/2t) + by sin(v/2t).
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By solving (8) and (9) we get the complete solution

1 1 9 9
T = 1—0a1 cost+ 1—0a2 sint+ Ebl cos V2t + Eb2 sin \/§t7

3 3 3 3
To=-—aq COSt+—assint— Ebl cos V2t — Ebg sin V/2t.

10 10
Then it follows from the initial conditions that
1 9 3 3
S Zp = 2 b — 2
71(0) = g+ 3501 = g a1+ 901 = 35,
dvs.
3 3 3 1
552(0) 1001 10 1 100° a1 1 10’
h b L d 3 It foll f
n = — an = —. Tom
ence by ) and a; 95 ollows fro
1 9v/2 3 3V2
x'l(()) = 1—0112 + ng =0 and Ié(o) = 1—0(12 - 1—0b2 = 0,

that ag = bQ =0.

The wanted solution is

x = % cost + % cos(v/2t),

9 3
= " cost— — 2).
2 = 525 cost 200 cos(v/2t)

3) The “fumbling method”. If we eliminate x5 by

mq d2x1 k’l +k

2T ae PR

then
mi d4(E1 kl-l-k dzl'l k2+k mi d2$1 (kl-l-k)(kl-f—kg)z o k "
k dt* ko di? k my di? kma Tt

hence by a rearrangement,

mi d4(£1 k1+k2+2k d2£L'1 (k1+k2)k+k‘1k2z

& dit k dt2 kg 1=0

When we multiply by & and insert the chosen values of k, m; and k;, we get

0—@_’_ §+§+é @_’_ i 24_2 T _@4-3@4-2%
Tt 55" 5) a2 10 5 25)°t 7 qi dt2 b

The characteristic polynomial R*4+3R?>42 = (R?41)(R?42) has the roots R = +i and R = 4+/2i,
thus

&1 = ¢y cost + cysint 4 ¢3 cos(V2t) + ¢4 sin(vV2t),
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and whence

€To 1—0+5

10 d%a4 10 < 3 8) 10 d2a4 19
1= x1

3ar 3 REN )

1 1
= 3cycost+ 3cosint — 503 cos(\/it) — §C4 sin(\/it).

It follows from the initial conditions that

1 3
TQ(O) = 3(21 — =C3 = ———,

21(0) = ¢ + 5 = ——.
71(0) = ertes = 755 3 100’

2
0 =+ VI =0, (0) = 3es— e =0,
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We immediately get

3
co =cq4 =0, and ¢; = — og ¢z =

250 500

The wanted solution is

3
x = ﬁcost—i— % cos(v/2t),

o = % cost — 530 cos(v/2t).

Example 3.2 For small oscillations (small swings © and ) it is possible to show that the model of
the double pendulum can be described by the equations

20 d%p
W 4 1=L 4290 =0,
az Ttae Tt

20 &y
Py 4 —0.
az Thae T9¢

Find the eigenfrequencies and the complete solution.
If we solve with respect to (0, ¢), we get the system
O\ _(~tlg /) \ L (6 _, & (6o
o) \ g —tlg Jdar\ e ) “d2\ e )’

The eigenvalues satisfy the equations
2 2
‘ —(t/g) =X —t/(29) ’ _ (H é) _1 (é) —0
—tlg  —(t/g)—A g 2 \y ’
V2)\ ¢ o .
thus A= [ -1+ )3 and a corresponding eigenvector is e.g. (1, Fv/2).

1
Since A~' has the same eigenvectors as A, and the eigenvalues v we derive the two differential
equations of second order

(O —V3g) = <2+ﬁ>§<@—m>,

dt2

= (04 vap) = (2—ﬂ>§<@+m>,

at?

hence

o — \/5(,0 = 2a; cos (\/ 2—1—\/5\/%15) + 2as sin (\/ 2—1—\/5\/%15) ,

Download free books at BookBooN.com

68



Please click the advert

Calculus 4c-3

Examples of applications in Physics

O+ \/§g0 = 2b7 cos (\/ 2—\/5\/515> + 2bgy sin (\/ 2—\/5\/§t> .

Finally, we get

© = ajcos ( (2+g\/§)€t) + ao sin( (2+g\/§)€t)

+b1 cos ( @f@t) + by Sin( mt) ,

9

and

eV e 24V
VG g V2 g

by (2—V2)¢ by . (2—V2)¢
+ﬁcos< g t) +ﬁs1n( g t).
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Example 3.3 Two electric conductors are coupled mductwely If i1 and io denote the current inten-
disg
sities of the conductors, then the induced forces M_t and M dt

the conductors, resp.. Then the differential equations of i1 and iy are given by

, (where M is a constant) in each of

d2i; d 1 d%i
L M — =
vz T to ot dt2 0,
d221 d ig 1
M—2 4+ L
dt2 2d2 R2 d 02 =9

where L, R and C are the induction coefficient, the resistance and the capacity, resp..
1) Find the complete solution
2) Check the cases

a) M =0,

1 1
b) Ry = R2 =0, and nq =

—— =Ny = .
VLG, 2 VI.0,

d d
1) If we put x1 = i1, 2 = is, T3 = % and x4 ﬁ, then
d 1 dl’4
L M— =
1— a +R1$3+C 1+ i 0,
dxg dxy
M——+ L R =0,
i + Lo—— I + Roxy + C — T
thus by a rearrangement,
d:L‘3 d$4 1
L +M—=——
15, dt dt C’lxl Rixs,
dl‘3 d.]?4 1
M—+ Lo— = ——x9 — Roxy.
a T c, T e
If L1L2 7é MQ, then
% _ Lgl‘l + MJ?Q _ R1L2.T3 + MR2$4
dt (LiLy—M2)Cy  (L1La—M?)Cy LyLo—M?2  LyLy—M?’
dl‘4 - MZCl Lll‘g R1M$3 L1R2x4

dt  (L1Ly—M?)C,  (LiLy—M?)C,y LM Tyl ME

Hence in the form of a matrix,

dx
=A
a -
so if we put @ = L1 Ly — M?, then
0 0 1 0
0 0 0 1
ac| L MR MR
aCq aCly a a
IR R T
aCq aCly a a
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In principle it is possible to find the eigenvalues and the eigenfunctions of this system. In practice,
however, it is very difficult, so we stop here.
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4 Stability

Example 4.1 Check the stability of the following system

(s ) (2) a0

The eigenvalues are the roots of the polynomial

1-A 7
3 —2-A

'—()\1)()\+2)21—>\2+>\23.
This polynomial has a negative coefficient, hence the system is unstable.

Example 4.2 Check the stability of the system

dx -1 1 0 1
T -5 -1 1 z2 | +u(t).
-7 0 1 T3

The eigenvalues are the roots of the polynomial
—1-A 1 0
=5 —1-A 1

-7 0 1-—A

A+1)?1—N) = 7+5(1-N)

= NP4+ 4+A+1
Here a; =1>0,a2 =4>0,a3 =1>0, and

a; ag
1 as

1 1
= ‘ 1 4 ’ =3>0,
so all roots have a negative real part, and the system is asymptotically stable.

Example 4.3 Check the stability of the system

0 0 0 1\ [/m
ix | 0 -1 -1 -1 ||
il IR S S [ IS I OF

0 0 1 0 Ty

The eigenvalues are the roots of the polynomial

_()A —10—/\ —01 —11 —A 0 1

= —A+1)] -1 —1-X -1
-1 0 —1-X -1 0 ) Y
0 0 1 Y

The roots are A = —1 (double root) and X\ = =i.

The system is stable, but not asymptotically stable.

A+ DN (1= 1= = A+ 1)*(W +1).
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Example 4.4 Check the stability of the system

a=(1 0)(5) e

The eigenvalues are the roots of the polynomial

‘ 1-—)\ -1

1 1o ':(A+1)(>\—1)+1:)\2,

so A = 0 is a double root. 1t is not possible at this stage to conclude anything about the stability, so
we must necessarily solve the system.

It follows from Cayley-Hamilton’s theorem (cf. Linear Algebra) that A% = 0, hence the series of
the exponential matrix is reduced to

B (10 t —t\ _[(1+t —t
exp(At)I+tA<0 1)+<t —t>( . l—t)'
The complete solution of the homogeneous equation is
T o 1+t —t o C1 C1 — Co
(2)=o (7 )ee ()= (0) - (520)

If ¢1 # co, then the absolute value of this solution tends to infinity, so we conclude that the system is
unstable.

Example 4.5 Check the stability of the system,
d_X _ 1 -1 I
The eigenvalues are the roots of the polynomial

‘ R ‘=(A—1)<A—2>—2=A2—3A:A(A_3)’

-2 2-=A

hence A =0 and A = 3 > 0, and we conclude that the system is unstable.

Example 4.6 Check the stability of the system,

dx -2 -1 0 T cost
T = -1 -1 0 To | + | cos2t
t 0 0 —1 T3 sint

The eigenvalues are the roots of the polynomial
—2-A -1 0

-1 —1-Xx 0 :—(A+1)’
0 0 —1-2A

A2 1 _ 9

1 )\+1‘——(/\+1){)\ +3\+1}.
Since all coefficients in the splitting into factors have the same sign, every root must have a negative
real part, and we conclude that the system is asymptotically stable.
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Example 4.7 Check the stability of the system,

dx 1 -1 0 T
i 0 -1 -1 x2 | +u().
1 -1 0 3

The eigenvalues are the roots of the polynomial

1-x -1 0 A-1 1 0
0 —1-Xx —-1| = (=13 0 X+1 1 |=-{DN-1)—-1-A-1)}
1 -1 = -1 A

= P -A=A =A% =2) = A\ = V2) (A +V2).

It follows immediately that the system is unstable.

Example 4.8 Find all numbers a, for which the linear system

0 0 0 1 1

dx 0 -1 a 1+a? To

dt 0 —a O a 23 +u(t)
—a 1 0 -1 Ty

is asymptotically stable.

The eigenvalues are the roots of the polynomial

—A 0 0 1 —1-X a 1+ a?

N 2 I
0 1-X a 1+4+a _ L Y a ta 1-\ a
0 —a —-A a 1 0 —1-21 —a —A
—a 1 0 —-1-X

—1-X a a®=2)\
=X —a - 0 +a{\? + XN +a?}
1 0 -
a a®>—\

—1-X a
- 0 —a

2
42 °

’+a{)\2+/\+a2}

= A=A+ a®A) + XA+ A+ a) +a(\ + A +a?) =2 +2X0% +a)\? + a) + d®,
hence
a1 =2, as=a, az=a, as=a, andn=4.

We get from Routh-Hurwitz’s criterion the conditions Dy = a3 =2 > 0,

_la a3z | |2 a| _
Dy = 1 ay =1 =a >0,
ay as as 2 a 0 2 a 0
Dy = 1 ay as |=|1 a & |=a|l a a®
0 a1 as 0 2 a 0 2 1

1
It follows that the condition for asymptotically stability is that 0 < a < T
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Example 4.9 Let (z,h)T denote a state vector (where h denotes the velocity of M, defined below). A
servo system, which is used to keep the (right hand side of M) in a constant position xq independently
of the external force f(t) on M, can then be described by the state equations,

0 1 0
%(i): Key  k K2 (z>+<@_f{eoxo>.

MrR M  r2RM M  RrM

Here the spring has the equilibrium length 0, and the error of the position governs the dependent
generator.

1) Find the characteristic polynomial of the system, and the values of eq, for which the system is
stable.

2) Assume that f(t) = F is constant and that the system is stable. Find x1 = limy_ o x(t). Is
Tr1 = Xo ?

3) Assume that f(t) is arbitrary for t € [0,to[, while f(t) is 0 fort > to. Find lim;_,o z(1).

1) The characteristic polynomial is
—A 1 2
K k K
PN =| Keo _k _ K> |=N+- <0
MrR M r2RM
The system is asymptotically stable, when

0 k Key K k:?“R_e
K 0>

<M MrR _ MR
hence when

0<60<7.

2) We shall find a particular solution (z1,h1)?. If f(t) = F is a constant, we guess on a constant
vector (x1, hy). It follows from the former equation that

d

%:O:O'x1+h1+0, dvs. hy = 0.
By insertion into the latter equation we obtain

d—hl_o_ Keo_ﬁ +£_K€0$0

it \MrR M["™ T M ReM’
thus

1 1
M—m{KEO - k’f‘R}l‘l = _R?"—M{Keoxo - FRT},

and hence
S Kegxrg — FRr
e Key — krR -~

krR
The solutions of the homogeneous equation die out when e < ——, so the expression is equal to

lim; o0 2(t). (Note that the denominator is < 0). It follows that this expression is only equal to
Zo, if FF= kﬂjo.
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3) If the process is initiated after ¢, it follows that we can choose F = 0. By insertion of this into

krR
the result of (3), we get by the assumption ey < % that

. Keomo
1 )= ——— .
tg&x() Keo—krR<0
Example 4.10 Check if the solutions of the differential equation
yl// +4yll +4y — 0

are stable.

The characteristic polynomial is

PO =X +4X2+4=24+4\2 40\ 4.

The coefficient of X is 0, hence the system is not asymptotically stable.
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By means of e.g. a pocket calculator we find the approximate roots

A =10,112085 £ 0, 9666274 eller A= —4,22417.
Since there are roots with a positive real part, the system is unstable.
Alternatively we introduce the disturbance

Po(A) = X2 +4)2 +eX + 4.

Then all roots have a negative real part, if and only if € > 0 and

=4(e—-1)>0 (Routh-Hurwitz’s criterion),

4 4
1 ¢

thus if and only if € > 1. Since we here let € — 0, we again conclude that the system is unstable.

Alternatively the equation has a real root < 0 and two complex conjugated roots x + iy. When we
put A =z +1iy, y # 0, then

0= (x+iy)® +4(x +iy)? +4 = {2° — 32y® + 42® — 4y* + 4} + i - y(32% — y* + 8x).

Since in particular the imaginary part is 0, we must necessarily have that y2 = 322 + 8z, which when
put into the real part gives the necessary condition

0= —8z3 — 3222 — 322 + 4.

Since we have both positive and negative coefficients, we must have a real and positive root, so the
system is unstable.

Example 4.11 It is well-known that a rigid body can be in a permanent rotation around any of
its principal azes (through a fixed point of the body). However, the rotation around the azis of the
“middle” moment of inertia is not stable. Apply Euler’s equations and small variations of the velocity
of the angle to prove this.

Euler’s equations are

d
11% + (Is — Io)wows = M,
t
dw
I2d—2 + (I1 — I3)wiws = Mo,
t
dW3
Isﬁ + (I2 — [1)wiwz = M.

Assume that My = My = Mz = 0 and wy = wy + &1, we = &, wy = &3, where &, are small
variations and wq is a constant (hence one consider a rotation around the first principal axis and
small disturbances). By insertion into Euler’s equations, follows by a linearization we obtain a system
of first order for &, , the stability of which should be checked.

Putting My = My = M35 = 0 and wy = wg + &1, we = &2, wy = &3 into Euler’s equations we get by
linearizations (this implies that we assume that the £, -erne are so small that we can neglect terms of
higher order) that

dfl d§1

=] —= Is — 1 ~ [ ——
0 L + (Is — I5)&265 1o
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d
0—5% + (11 — I3)(wo + &1)&3 ’“12% + (I — I3)woks,
d d
0= Is% + (12 — I1)(wo + &1)62 = I3§ + (I2 — I1)wobo.
This linearization is written in matrix form
0 0
d &1 0 0 L - Isw &1
— | & | = I, ° &2
dt ¢ I— I3 ¢
3 0 ——Wwo 0 3
I3

The characteristic polynomial is

) —Il_I3w
-\ L1 I 0 :—)\{)\2— (Il _13)(12_1—1)0]3}'
28 Y Ir13
I3

Since & is a constant, we obtain stability (though not asymptotically stability), when

(I = I3)(I2 — 1)
I

<0,

thus when
(I, — I)(I, — I3) > 0.

For fixed I and I3 this is only possible when I; does not lie between I and I3. Therefore, if I; is the
“middle” moment of inertia, then we have unstability.

Remark 4.1 It follows easily from Euler’s original equations that

Ilw% + 12w§ + Igwg >0 is a constant.

In fact,
d dw dwo dws
E{Ilw% + Igwg + Igwg} = 2[1(4}1 dt + 2[2(4)2 dt + 2[3Ld3 i

2W1WQW3{11(12 — 13) + 12(13 — Il) + 13(11 — IQ)} = O
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Example 4.12 Consider the linear system

dx 0 —1 1
(10)@-(1 O>X(t)—|—(0)cos2t, teR.

1) Find the complete solution of (10) by first finding a solution of the inhomogeneous equation, and
then find the complete solution of the homogeneous equation.

2) Then prove that (10) has periodical solutions which unlike the external force cos2t does not have
the period .

3) Is it possible for a stable and linear system for a given external periodical force to have a periodical
solution of a different period than the external force?

1) We guess a particular solution of the form
z1 \ _ [ apcos2t+ agsin2t
To )\ bicos2t+bysin2t |-
Then
i x1\ [ 2a9cos2t — 2aqsin2t
dt \ zo )\ 2bycos2t — 2b; sin 2t
and
0 -1 21\ [ —bicos2t — bysin2t
1 0 Ty ) ajcos2t +agsin2t |-

By insertion into the equation and an identification of the coefficients we get

2a2+b1:1, a1 =bo =0
2a1 = b, hvoraf a1 = 22 7
2b2 =daq, b2 . i’l
2b1 = —as, L= 3

A particular solution is
T\ 1 2sin 2t
o )] 3\ —cos2t )

It follows immediately that the eigenvalues are A = +i and that (cost,sint) and (sint, — cost) are
linearly independent solutions of the homogeneous equation. Hence the complete solution is

v\ _ 1 [ 2sin2t te cost te sint
ro ) 3\ —cos2t L\ sint 2\ —cost J’
where ¢y and ¢y are arbitrary constants.

2) It is obvious that if ¢; # 0 or ¢p # 0, then every solution is periodical with period 2.

3) The answer if affirmative, because we have above produced an example. Notice that this system
is clearly stable, (though it is not asymptotically stable).

Download free books at BookBooN.com

79



Calculus 4c-3 Stability

Example 4.13 Given the linear system of differential equations

d
dd—? = x1 — 82,
% = =1 -+ 3332.

1) Find a fundamental matriz of the system.
2) Is the system asymptotically stable?
3) Find the solution x(t) of the system, for which x(0) = (6,0)7.

1) Here there are lots of variants, of which we demonstrate two of them.

a) The eigenvalue method. The system is on matrix form,

i) =4 3) ()

The eigenvalues are the solutions of the equation

‘ 1__1/\ 3__8)\ ‘ = (A=1)(A=3)=8 = A2 —4\—5 = (A=5)(A+1) =0,
hence A\ = 5 and As = —1. The eigenvectors are cross vectors of (—1,3 — A).

If Ay =5, then e.g. vi = (2,—1).
If Ay = —1, then e.g. vo = (4,1).
The complete solution is

T\ s 2 o4\ [ 2% et c1
<x2>—cle (_1>+62€ (1>—(_65t et e )’
hence a fundamental matrix is given by
2e5t 4et
2= (20 1),

b) The fumbling method. We eliminate x; by

X
xr] = —d—i + 3x9.
Then
d’l‘l o d2$2 dl’Q o - dlL’Q o dl’g
T e e T e R A T

hence by a rearrangement,

@ra T2 g0 med RP—AR—5 = (R—5)(R+1)
dt2 dt T = me = .
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The complete solution is

dr
o = c1e®t + coe”? med d—t2 = 5c1e® — coe” !,
thus
dx
T = _d—t2 + 3z = —5cle5t +ege 4 3cle5t +3cge t = —2cle5t + 4eget

Summing up we get

1\ _ [ 21’ +4dcget [ —2e% 4et c1
xy ) 1% + coet - et et co )’

and a fundamental matrix is given by

—2e% 4ot
() = < oot —t )

e

2) The system has a positive eigenvalue, hence the system is unstable.
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3) We shall find (cq, ¢2) of the system of equations,

(6) == (5)=(5 ) (%)

thus

(=05 1) (0)=5G ) 6)-0):

and the wanted solution is
T\ 2¢5t 4 4et
xe )\ =Pt 4t )¢

Example 4.14 Given the linear system of differential equations

dSCl

= 5x1 + axs,
it a,beR.
d_tz = 2x1 + bxo,

1) Find a relation, which a and b must satisfy, if the system is asymptotically stable.

2) Find for a = —4 and b = —1 a fundamental matriz for the system.

3) Find eAt for A = (g :%)
1) The characteristic polynomial is

‘ 5? boa ‘:(/\_b)(/\—5)—2a:)\2—(5+b)/\+(5b—2a).

It follows from Routh-Hurwitz’s criterion that the system is asymptotically stable, if and only
if

—(B5+b)>0 and 5b — 2a > 0,
2
hence if and only if 5 <b< —b.

2) When a = —4 and b = —1 the characteristic polynomial becomes
AN —(5-1)A=5+8 = A2 =4 +3 = (A-2)*~1 = (A\—-1)(A-3),
thus the roots are A =1 and A = 3.
Since the matrix is A, given in (3), an eigenvector corresponding to an eigenvalue A is a cross
vector of (5 — X\, —4).
If \; = 1, then v; = (1,1)T.
If Ay = 3, then vo = (2,1)7.

A fundamental matrix is

et 2€3t
®(t) = (etvl,e3tv2) = < o 3t |-
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3) If we instead use the fundamental matrix ®(t), found in (2), we get

1 2

‘I’(O):<1 1

Then

e

exp(At) = ®(1)®(0) ! = ( .

Alternatively,

7)\26)\17: +)\1€)\2t e)\lt

exp(At) =

t 26375

o) (S

) med ®(0)"' = — ( fl

I+ —°

Aot

-2

1

A1 — A

A1 — A

1 3et—e¥ 0 1
D) 0 3et—e3t +§

—et + 2e3t
—et + e3¢

X

2et — 2¢%
2615 _ eSt

—5el45e3t

)= 4)

< —et 4 2e3t

2¢t — 2¢%t
_et + e3t °

2€t _ e3t

A= f% {—3e" +e¥} 11— % {et =€} A

det —4e3 )

7267: +2€3t et 7€3t

Example 4.15 Find a relationship between the real parameters a, b, such that the linear system

Z1
€2

a(n)=(

is asymptotically stable.

)(2)

The characteristic polynomial is

1-X a
1 b—A\

‘ =A=1DA=b)—a == (b+1)A + (b—a).

83
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It follows from Routh-Hurwitz’s criterion that the system is asymptotically stable, if and only if
—(b+1)>0 og b—a>0,

thus if a < b < —1.

3 2 T2 3
X

-1

—2

_3-

Example 4.16 Let

-3 -1 =2

A:(611 47) and B = 0 -1 0
4 0 -3

1) Check if the linear system

dx
A
dt x

is asymptotically stable.

2) Prove, e.g. by means of Routh-Hurwitz’s criterium, that the linear system

dy _

B
di y

18 asymptotically stable.

1) The characteristic polynomial for A is given by

2

6—\ 4 B . - 1 .

‘ —11 —7-A ‘ = (A=6)(A+7)+44 = A"+ A+2 = <A+§> +
We have here two variants:

a) Since all coefficients of the characteristic polynomial are positive, it follows immediately from
Routh-Hurwitz’s criterion that the system is asymptotically stable.

1 7
b) Since the roots A = —3 + z\/; all have negative real part, the system is asymptotically stable.
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2) If we expand the determinant after the second row, we get the characteristic polynomial for B,

-3-A -1 -2

0 —1-XA 0 - —(A+1) —34—/\ _?)—EA

4 0 —3-=A
(11) = A+ D{A+3)2+8 =+ {2+ 61+ 17}
(12) = M+ T2+ 280+ 17} = —{X* + a1 A2 + as) + a3},

hence a1 =7, as = 23 and a3z = 17.

We have again two variants:

a) It follows from (11) that the roots are
—1, =34+i2v2, —3—i2V2.

They have all a negative real part, hence the system is asymptotically stable.

o
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b) The conditions of Routh-Hurwitz’s criterion are [cf. (12)]

ayp ag

1 ay > 0.

ar >0, a2 >0, az>0,

The first three relations are clearly satisfied. Finally,

1 23

11 as
1 an

:’ [ ’:161—17:144>0.

Then by Routh-Hurwitz’s criterion the linear system is asymptotically stable.

Example 4.17 Check if the linear system

d Tq 0 1 0 T
E J,‘2 = O 0 1 = ./L‘Q
T3 -1 -1 =2 T3

is asymptotically stable.

The characteristic polynomial is
-2 1 0
—p(A\)=| 0 =\ 1 = NA+2)—1-A=-{N+222 4+ X +1},
-1 -1 =2-X
thus
PA) =N F 202 £ A+ 1 =X+ A2 + o\ + as.

Now, a1 =2>0,as=1>0and ag =1 > 0, and

ayp as

1 as 1 1

:‘2 1’:1>0,

so it follows from Routh-Hurwitz’s criterion that the system is asymptotically stable.

Remark 4.2 By using a pocket calculator it is seen that the roots are approximatively

Ao = —0,122561 £ - 0, 744862, A3 = —1,75488.
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Example 4.18 Check if the linear system

i o 2 3 X1
dt~ \ 3 2 To
is asymptotically stable?

The eigenvalues of the matrix satisfy

2—-A 3

O:‘ 32—

‘:(2—)\)2—9 [= A\ —4X 5],

so the eigenvalues are

9,

>\2j:3{ Y

We see that there exists a positive eigenvalue, hence the system is not asymptotically stable.

Remark 4.3 We mention for completeness that the complete solution is

x(t) = 1€ ( 1 ) + coe! ( _11 ) .
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5 Transfer functions

Example 5.1 Let A denote the matriz

(4 4)

1) Find the transfer functions H1(s) og Ha(s) for the systems

N[0 —=

a)

%?AMU+<é>u@,t€R, y(t) = (L, 1)x(1),
b)

‘fl_’t‘ = Ax(t) + ( _g > u(t), teR, y(t)=(1,1)x(t).

2) Find the stationary solution of the system

dx (t)+(2cost—l(3082t

— 2 =
X ax Lod ™M) teR y0=x0),

where we first prove that the system is stable.

The characteristic polynomial is

P(\) = A 2 —(r+2) (a4t +l—)\2+2/\+1—(/\+1)2
I N A 2 2) 4 B ’
so A = —1 is an eigenvalue of the multiplicity 2. The system is in particular asymptotically stable,

and we have proved the first part of (2).

1) a) Here ¢’ = (1,1), b= (1,0)" and d = 0, and

s+ 3 —1 2
sI— A= 12 2 where det(sI — A) = (s+1)7,
2

5 s +
Then
_ 1 s+ 3 1
I-A) = 2 2 -1
R = QU FY RS
hence
_ 1 s+ 1 1 1
_ T o 1 _ 2 2
Hl(S) C (SI A) b (171) (S+1)2 ( _% S—‘r% 0
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b) Since ¢’ = (1,1) and b = (-3, $)” and d = 0, and since (sI — A)~! was computed in (a), we

get

-1 1
) (s D

2) We have already in the beginning proved that the system is stable. Now,

2cost — L cos 2t 1 —1
2 _ . !
< %coth )-(0> 2cost+< §>cos2t,

and

2cost = 2Re (") and cos2t = Re (e*'),

so it follows by applying (1a), (1b) and the linearity that the stationary solution is

y(t) = 2Re{Hi()e"} + Re{Hy(20)e™}
_ QR{W}+ R{ﬁ}
— 2Re{2%,e”}+ Re{%e%t}

1
= cost+ %% Re{(—3 — 4i)(cos 2t 4+ isin 2t)}

3 4
= cost— %cos%—i— 2—5sin2t.

Example 5.2 Consider the linear system

dx -1 -1 -1
1) Prove that the system is stable.

2) Find the stationary solution, when u(t) = 4 cost.

1) The characteristic polynomial

-1-A -1

PO=1 " 7 1

=(A+1)2+2

y(t) = (1, 1)x(?).

has the roots A = —1 +14v/2, which both lie in the left hand half plane, so the system si asymptot-

ically stable.
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Calculus 4c-3 Transfer functions

2) First find the transfer function. Since
c'=(1,1), b=(-11)"  d=0,
and
_ S + ]. ]. o 2
sI—A—( 9 s—l—l) where det(sI — A) = (s+1)° +2,
and

- 1 s+1 -1
1-A) = —
(s1=4) (5+U2+2< 2 s+1)7

the transfer function is

1 s+1 -1 -1
1,1) ————
(’)@+1F+2( 2 s+1>( 1)
o (s+1)2+2 s—1) 7 (s+1)2+2
Since 4cost = Re{4e™}, the stationary solution is
y(t) = Re{H(i)e") = Red 2 4l = red —0 i
242 1494
= Re{-3(1—i)e"} = Re{(—3+ 3i)(cost + isint)}
= —3cost —3sint = —3v2sin (t + %) ,

H(s)

which clearly is periodical with period 2.

Example 5.3 Consider the linear system of differential equations of first order
d
(13) d—’t‘ = ax(t) +u(t), teR.
1) Find the values of the constant a, for which there for every periodical exterior force u(t) of period
T exists precisely one periodical solution of (13) with period T.
2) Find a value of the constant a and a periodical exterior force u(t) of period T, such that

a) (13) does not have any periodical solutions of period T .
b) (13) has infinitely many periodical solutions of period T .

Using the coordinates, (13) is written

das
% = az;(t) +u;(t), teR.

Hence we may assume that the dimension is 1, so (13) is reduced to
d
d—f = az(t) + u(t),

the complete solution of which is

z(t) = ce™ + eat/e_atu(t) dt.
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2mn
1) Ifaé¢ {%z |z € Z}, then there is precisely one periodical solution for every periodical exterior

force.

2mn

2) Choose e.g. a = 0. (Any a = =i can actually be chosen).

a) TEu(t) = |sin (2%75)

is not periodical.

, then u(t) has the period T'. Since u(t) > 0, it follows that 2(t) = [ u(t) dt

2
b) If u(t) = sin (%t), then every solution

x(t) =c N cos 2—7Tt
N 2m T

is periodic.
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Calculus 4c-3 Transfer functions

Example 5.4 Given a stable linear system with the external force u(t) and the given transfer function

s+2

H(s)= — 1%
(5) s24+2s4+4

Find the stationary solution, when

(1) u(t) = 2cos (2t+ %) (2) u(t) = —sin4t.

1) Since
2 cos (2t + g) = 2Re {62“ - exp (z%)} = \/5Re{(1 + i)ez“‘},

and
20+2 1+i
—A4+4i+4 2

H(2i) =

we obtain the real stationary solution

y(t) = V2Re {?(1 + z‘)e%} = V2Re{e®"} = V2cos 2t.
j
2) Since
—sin4t = — Im{e*"},
and

4i+2 2(1+2i) 3+2i 1 .
. =— < - = ——(—1+8i),
—16+8i +4 43 —-2i) 3+2i 26

H(4i) =
we obtain the real stationary solution

1 1
y(t) = % Im{(—1+ 8i)(cos4t +isindt)} = %{8 cos4t — sin4t}.
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Calculus 4c-3 Transfer functions

Example 5.5 A linear system of first order with one external force u(t) and the response y(t) has
the given transfer function

1) Prove that the system is stable.
2) Find the amplitude and phase for the stationary solution, when
(a) u(t) =cost, (b) u(t)=2cos2t,

(¢) u(t) = —cost, (d) u(t)=sin2t.

1) The transfer function is given by
H(s)=c"(sI - A)"'b +d.

This expression is not defined, if and only if s is an eigenvalue for A. In the given case we see
that H(s) is not defined for s = —1 < 0, which lies in the left hand half plane, so the system is
asymptotical stable.

. 1 1
2) a) Since u(t) = cost = Re e, and H(i) = T = 5(1 — i), we get the real stationary solution
i
with a phase shift
) 1 . 1
y(t) = Re{H(i)e"} = 5 Re{(1 —id)e"} = §(cost +sint)

isin(t—kz) —icos<t—z)
V2 4) 2 4)"
b) Since u(t) = 2cos2t = 2Re €%, and

. 1 1 .

we get the real stationary solution

y(t) = = Re{H(2i)e¥"} = %{(1 — 20)e?t) = %{cos 2t + 2sin 21)

_ %cos (275— Arcsin (%))

¢) By a change of sign in (a) we get

y(t) = —% cos (t - %) .

) 1
d) Since u(t) =sin2t = Im e** and H(2i) = g(l — 2i) by (b), the real stationary solution is

1 , 1
y(t) = R Im{(1 — 2i)e*"} = 5{Sin 2t —2cos 2t} =

= %sin <2t— Arcsin (%)) .

1 1 2
— < ——=s8in2t — — cos 2t
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Example 5.6 Prove that the linear system

()= ) ()

is asymptotically stable.
Find the transfer function (the transfer matrixz) for the linear system

(14) %(2):(13 13>(2>+(?)u(t), y(t) = xa(t),

and find the real stationary response of (14) for the influence u(t) = cost.

The characteristic polynomial

-A-3 1
4 3= (A+3)2—4 = (A+3)2—2% = (A +1)(A+5)
has the two to negative roots Ay = —1 and Ao = —5. We conclude that the linear system is asymp-

totically stable.

The transfer function is given by
H(s)=c(sI — A)"'b+d,

where we in the given case have

-3 1 0
A_<4 _3>a b_(1)7 C_(O71)7 d_07

thus
() = Oner- a7 ()
Since
ST— A= ( - 8113 > . det(sI— A) = (s4+1)(s+5),

it follows for s # —1, —5 that

1 1 s+3 1
G- 27 = s (7 )

Then we find the transfer function

B 1 s+3 1 0\  s+3 1
H(S)(8+5)(8+1)(0’1)< 4 8+3><1)(s+5)(s+1)2

I
s+1 s+5][°

1., 1 _.
For u(t) = cost = 3 et + 3 e~ we get the real stationzere response
1, 1 _, ; 3+ ,
t = HG) = it H(—5) = —it _ Re{ H (i iy R it
W) = HG) e+ H(i) g™ = Re(H()e"} = Req g nr e

B+G-—9) 4\ _ 1 o AL it
Re{(5+i><5—i>(1+¢>(1_¢>e }26.2 Re{(16 + 2i)(1 —i)e"}
! 1

; 1
o . ity — e .. _ .
= 35 Re{(8+1)(1 —d)e"} 56 Re{(9 — 7i)(cost + isint)} 26(9cost+7smt).
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